Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x:
\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{19x21}\right).x=\frac{9}{7}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{5}{11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\times\frac{10}{11}\)
\(=\frac{5}{11}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
(1/3x5+1/5x7+....+1/19x21)*x=9/7
(1/3-1/5+1/5-1/7+...+1/19-1/21)*x=9/7
(1/3-1/21)*x=9/7
2/7*x=9/7
=> x=9/7:2/7
=> x=9/2
Bạn leminhduc sai rùi @@
Ta xét :
B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
2 x B = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
2 x B = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
2 x B = \(\frac{1}{3}-\frac{1}{21}\)=\(\frac{2}{7}\)
B = \(\frac{2}{7}:2\)
B = \(\frac{1}{7}\)
Thay B vào biểu thức ta có :
\(\frac{1}{7}.x=\frac{9}{7}\)
=> x = \(\frac{9}{7}:\frac{1}{7}\)=\(\frac{9}{7}.\frac{7}{1}\)=9
Vậy x = 9
Giải
Ta có A= [1+1/3.5] + [1+1/5.7] + [1+1/7.9] + ... + [1+1/37.39]
=>A= (1+1+1+...+1) +(1/3.5 + 1/5.7 + 1/7.9 + ... + 1/37.39)
=> A = 18 + 1/2.(2/3.5+2/5.7+2/7.9+...+2/37.39)
=>A = 18 + 1/2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/37-1/39)
=> A= 18 + 1/2.(1/3-1/39)
=> A= 18 + 1/2 . 4/13
=>A= 18 + 2/13 = 236/13
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)=\frac{1}{2}.\frac{2008}{6033}=\frac{1004}{6033}\)
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+.....+\frac{1}{2009x2011}\)
\(=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+....+\frac{1.2}{2009.2011.2}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{2009.2011}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2008}{6033}=\frac{2008}{12066}\)
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)
\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)
\(\frac{1}{7}.x=\frac{9}{7}\)
\(x=\frac{9}{7}\div\frac{1}{7}\)
\(x=9\)
Vậy ...