tĩm
a) (2x+1)2=25
b) (x-1)3=-125
c) 2x+2-2x=96
d) 7x+2+2.7x-1=345
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-5\right)\left(2x+3\right)=x^2-25\\ \Leftrightarrow a,\left(x-5\right)\left(2x+3\right)-\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+3-x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-8\end{matrix}\right.\\ b,\dfrac{2x}{3}+\dfrac{2x-1}{6}=\dfrac{x-1}{2}\\ \Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}-\dfrac{3\left(x-1\right)}{6}=0\\ \Leftrightarrow4x+2x-1-3x+3=0\\ \Leftrightarrow3x+2=0\\ \Leftrightarrow x=-\dfrac{2}{3}\)
a) \(\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5\)
b) \(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\Rightarrow x=2\)
c) \(\Rightarrow2^x=32\Rightarrow x=5\)
d) \(\Rightarrow4^3.4^x=4^5\Rightarrow4^x=4^2\Rightarrow x=2\)
e) \(\Rightarrow3^3.3^x=3^5\Rightarrow3^x=3^2\Rightarrow x=2\)
f) \(\Rightarrow7^2.7^x=7^4\Rightarrow7^x=7^2\Rightarrow x=2\)
a. 2x . 4 = 128
<=> 2x + 2 = 27
<=> x + 2 = 7
<=> x = 5
b. (2x + 1)3 = 125
<=> (2x + 1)3 - 53 = 0
<=> (2x + 1 - 5)\(\left[\left(2x+1\right)^2+\left(2x+1\right).5+25\right]=0\)
<=> (2x - 4)(4x2 + 4x + 1 + 10x + 5 + 25) = 0
<=> (2x - 4)(4x2 + 14x + 31) = 0
<=> \(\left[{}\begin{matrix}2x-4=0\\4x^2+14x+31=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\VôNghiệm\end{matrix}\right.\)
c. 2x - 26 = 6
<=> 2x = 32
<=> x = 5
d. 64 . 4x = 45
<=> 43 . 4x = 45
<=> 43 + x = 45
<=> 3 + x = 5
<=> x = 2
e. 27 . 3x = 243
<=> 33 . 3x = 35
<=> 33 + x = 35
<=> 3 + x = 5
<=> x = 2
g. 49 . 7x = 2401 (Bn xem lại đề câu này)
<=> 72 . 7x = 74
<=> 72 + x = 74
<=> 2 + x = 4
<=> x = 2
a/2.5x+1+10=60
2.5x+1=50
5x+1=25
5x+1=55
x+1=5
x=6
b/(x-1)2=4
(x-1)2=22 hoặc (x-1)2 = (-2)2
x-1=2 hoặc x-1=-2
x=3 hoặc x=-1
c/ (2x+1)2=25
(2x+1)2=52 hoặc (2x+1)2=(-5)2
2x+1=5 hoặc 2x+1 = -5
2x=4 hoặc 2x=-6
x=2 hoặc x=-3
câu d hình như đề sai
a)2.5x+1+10=60 ➩2.5x+1=60-10=50 ➩5x+1=50:2=25 ➩5x+1=52 ➩x+1=2 ➩x=1
b)(x-1)2=4 ➩x-1=2 hoặc x-1=-2 ➩x=3 hoặc x=-1
*phần b,c mình ghi "hoặc" thì bạn dùng dấu ngoặc vuông nhé *
C)(2x+1)2=25. ➩(2x+1)2=52 ➩2x+1=5 hoặc 2x+1=-5
➩x=2 hoặc x=-3
Phần D là 2x+2x+3=144 hay 2x+2x+3 =144 thế
\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2
a,
\(\left(5x+3\right)^2=\dfrac{25}{9}\\ \Rightarrow\left[{}\begin{matrix}5x+3=\dfrac{5}{3}\\5x+3=-\dfrac{5}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{15}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
b,
\(\left(-\dfrac{1}{2}x+3\right)^3=-\dfrac{1}{125}\\ \Rightarrow-\dfrac{1}{2}x+3=-\dfrac{1}{5}\\ \Rightarrow x=\dfrac{32}{5}\)
c,
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)
Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)
\(\Leftrightarrow2x^2+2-2x^2-2x=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1(nhận)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)
Ta có: \(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)
\(\Leftrightarrow6x^2-3x+4x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow6x^2-6x+7x-7=0\)
\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)
d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)
Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)
\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)
\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)
a) (2x+1)2=25
(2x+1)2= (+-5)2
=> 2x+1 = 5 hoặc 2x + 1 = -5
2x = 4 hoặc 2x = -6
x= 2 hoặc x=-3
b) (x-1)3=-125
(x-1)3= (-5)3
=> x-1 = -5
x= -4
c) 2x+2-2x=96
2x.22 - 2x = 96
2x( 4-1) = 96
2x = 96 : 3
2x= 32
2x = 25
=> x= 5
d) 7x+2+2.7x-1=345
7x-1 . 73 + 2.7x-1=345
7x-1( 73 +2) = 345
7x-1 . 345 = 345
7x-1 =1
=> x-1 = 0
=> x= 1