K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Hình vẽ:

23 tháng 6 2021

tham khảo của đỗ chí dũng câu hỏi của chi khánh

27 tháng 9 2021

bạn tự vẽ hình giúp mik nha

\(AH=\sqrt{AB^2-BH^2}\left(pytago\right)=\sqrt{6^2-3^2}=3\sqrt{3}\)

trong \(\Delta ABC\) vuông tại A có

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\)

\(AC=\sqrt{AH^2+HC^2}=\sqrt{\left(3\sqrt{3}\right)^2+9^2}=6\sqrt{3}\)

chu vi \(\Delta ABC\)

=AB+BC+AC=6+12+6\(\sqrt{3}\)=28,4

chu vi \(\Delta ABH\)

=AB+BH+AH=6+3+3\(\sqrt{3}\)=14,2

chu vi \(\Delta AHC\)

=AH+HC+AC=3\(\sqrt{3}\)+9+\(6\sqrt{3}\)=24,6

NV
21 tháng 8 2021

Áp dụng định lý Pitago:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{41}\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{41}{4}\)

Áp dụng Pitago:

\(AC=\sqrt{BC^2-AB^2}=\dfrac{5\sqrt{41}}{4}\)

Chu vi: \(AB+AC+BC=\dfrac{41+9\sqrt{41}}{4}\left(cm\right)\)

1 tháng 7 2019

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m