Phân tích đa thức thành nhân tử
1) \(\left(x^2+1\right)^2-4x^2\).
2) \(x^2-y^2+2yz-z^2\)
Giúp Mk nha Mk tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)
a) x2 - y2 - z2 - 2yz
=x2 - (y2 + 2yz + z2)
=x2 - (y + z)2
=(x - y - z)(x + y + z)
b)4x2(x - 6) + 9y2(6 - x)
=4x2(x - 6) - 9y2(x - 6)
=(x - 6)(4x2 - 9y2)
=(x - 6)(2x - 3y)(2x + 3y)
a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)
=(x+2)(x4-x3+x2-x+1)
4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
a) Đưa về hằng đẳng thức số 3 , ta có :
\(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(x^2-1-2x\right)\left(x^2-1+2x\right)\)
b) \(x^2-y^2+2yz-z^2\)
\(=x^2-\left(y^2-2yz+z^2\right)\)
\(=x^2-\left(y-z\right)^2\)
Tương tự như câu a , áp dụng hằng số 3 , ta có :
\(=x^2-\left(y-z\right)^2=\left(x-y+z\right)\left(x+y-z\right)\)
1) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
\(=\left(x^2-1\right)\left(x^2-1\right)\)
\(=\left(x^2-1\right)^2\)