cho lăng trụ đứng ABC.DEF có đáy ABC là tam giác vuông tại A có AB = 3cm
AC = 4cm chiều cao AD = 6 cm. tính diện tích xung quanh, diện tích toàn phần,
diện tích đáy, thể tích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
BC=căn 1,5^2+2^2=2,5cm
Sxq=(1,5+2+2,5)*4,5=27cm2
Stp=27+2*1/2*2*1,5=30cm2
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
Xét tam giác ABC có nửa chu vi của tam giác là:
Khi đó ta có
+ Diện tích xung quanh của hình lăng trụ
a, Diện tích một mặt đáy: 1/2.3.4= 6 (cm2)
b, Diện tích xung quanh: 7.(3+4+5)=84 (cm2)
c, Diện tích toàn phần: 84+2.6= 96 (cm2)
d, Thể tích lăng trụ: V= 7.6=42 (cm3)
Áp dụng định lí Pitago vào △ABC:
⇒ BC2=√(AB2+AC2)=√(32+42)=5 cm
⇒ PABC=5+4+3=12 cm
Nên diện tích xung quanh của hình lăng trụ đứng ABC.DEF là:
Sxq=2p.h=12.6=72 cm2
Diện tích 2 đáy của hình lăng trụ đứng ABC.DEF là:
2.\(\dfrac{1}{2}\).3.4=12 cm2
Diện tích toàn phần của hình lăng trụ đứng ABC.DEF là:
72+12=84 cm2
Diện tích đáy của hình lăng trụ đứng ABC.DEF là:
\(\dfrac{1}{2}.3.4\)=6 cm2
Thể tích của hình lăng trụ đứng ABC.DEF là:
6.6=36 cm3