Bài 1: Cho 2 số: abc và cba . Chứng tỏ rằng hiệu của chúng chia hết cho 9 và chia hết cho 11
Các bạn giúp mik vs nha. Mik đang gấp. Sẽ tick..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Xin lỗi nha, mik mới lớp 5 nên chỉ biết giải 2 bài còn lại. Bài 2 vì chữ số hàng chục gấp 3 lần chữ số hàng đơn vị mà số đó lại chia hết cho 2 => số đó là 62 (vì số 2 ở hàng đơn vị là số duy nhất có thể nhân với 3 mà ra số cí một chữ số). Bài 3 thì:
Hàng nghìn: 4 lần chọn
Hang trăm: 3 lần chọn
Hàng chục: 2 lần chọn
Hàng đơn vị: 1 lần chọn
=> Số các số hạng có the viết được là: 4 x 3 x 2 = 24
Kết bạn với tôi đi thtl_nguyentranhuyenanh nha
Câu trả lời tôi ko biết bởi mới học lớp 5
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19
Ta có :abc -cba=(100a+10b+c)-(100c+10b+a)
=100a+10b++a-100c-10b-a
=99a-99c
=9.(11a-11c) chia hết cho 9
Mặt khác : 99a-99c =11(9a-9c) chia hết cho 11
vậy hiệu của abc và cba chia hết cho 9 và 11