M=1+2010+2010^2+2010^3+2010^4+.....2010^7
Chứng minh M chia hết cho 2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M= ( 1+20101)+(20102+20103)+(20104+20105)+(20106+20107)
M= 1.(2010+1) + 20122.(2010+1)+20104.(2010+1)+20106.(2010+1)
M= 2011.(1+20122+20104+20106)
Vậy M chia hết cho 2011
Theo anh thì:
M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)
M=(1+2010)+2010^2(1+2010)+2010^4(1+2010)+2010^6(1+2010)
M=2011(2010^2+1010^4+2010^6) Vậy M chia hết cho 2011 vì trong 1 tích chỉ cần có 1 thừa số chia hết cho 1 số thì cả tích đó chia hết cho số đó.
A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7
A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)
A=2011+2010 mũ 2.2011+...2010 mũ 6.2011
A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011
A=2010^1+2010^2+2010^3+..........................................+2010^2010
vay suy ra co tat ca 2010 s hang vay ghep cap
A=2010(1+2010)+2010^3(1+2010)+..........................+2010^9(1+2010)
A=2010.2011+2010^3.2011+............................+2010^9.2011
A=2011(2010+........2010^9) chia het 2011
suy ra A chia het cho 2011
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
M=1+2010+2010^2+2010^3+...+2010^7
Ta có: 2011=1+2010
Số số hạng của tổng M là: (7-0):1+1=8
Mà 8:2=4 nên ta có:
M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)
M=2011+2010^2.(1+2010)+2010^4.(1+2010)+2010^6.(1+2010)
M=2011+2010^2.2011+2010^4.2011+2010^6.2011
M=2011.(1+2010^2+2010^4+2010^6)
Vì 2011 chia hết cho 2011 và 1+2010^2+2010^4+2010^6 là số nguyên
Vậy M chia hết cho 2011
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.<
=> 2010M=2010+2010^3+2010^4+...+2010^8
=> M=2010^8-1/2009
=> M chia hết 2011