K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{15}\right)+....+\left(x+\frac{1}{575}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(13x+\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(13x+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(2x+\frac{12}{25}=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

Đặt \(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

\(3A-A=1-\frac{1}{3^5}=\frac{242}{243}=2A\)

=> \(A=\frac{121}{243}\)

=> \(2x+\frac{12}{25}=\frac{121}{243}\)

=> \(2x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)

=> x = ......

10 tháng 1 2017

x = từ 1 đến 10000....0

23 tháng 1 2016

Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi

23 tháng 6 2017

Nhân 2 cả 2 vế lên:

\(\left(2x+\frac{2}{1x3}\right)+...+\left(2x+\frac{2}{23x25}\right)=22x+\frac{2}{3}+\frac{2}{9}+\frac{2}{81}+\frac{2}{243}\)2/243

\(24x+\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{23}-\frac{1}{25}\right)=22x+\frac{162+54+6+2}{243}\)

\(24x+\frac{24}{25}=22x+\frac{224}{243}\)

\(2x=\frac{224}{243}-\frac{24}{25}\)

\(2x=-\frac{232}{6025}\)

\(x=\frac{-116}{6075}\)

23 tháng 6 2017

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}\right)\)

\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]=11.x+\left(\frac{81}{243}+\frac{27}{243}+\frac{3}{243}+\frac{1}{243}\right)\)

\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)\right]=11.x+\frac{112}{243}\)

\(12x+\left(\frac{1}{2}.\frac{24}{25}\right)=11.x+\frac{112}{243}\)

\(12x+\frac{12}{25}=11x+\frac{112}{243}\)

\(11x-12x=\frac{112}{243}-\frac{12}{25}\)

\(-1x=-\frac{116}{6075}\)

\(x=-\frac{116}{6075}\div\left(-1\right)\)

\(x=\frac{116}{6075}\)

30 tháng 8 2016

\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{9}\right)+\left(x+\frac{1}{27}\right)+\left(x+\frac{1}{81}\right)=\frac{51}{81}\)

\(\left(x+x+x+x\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)=\frac{51}{81}\)

\(\left(x+x+x+x\right)+\left(\frac{27}{81}+\frac{9}{81}+\frac{3}{81}+\frac{1}{81}\right)=\frac{51}{81}\)

\(x\times4+\frac{40}{81}=\frac{51}{81}\)

\(x\times4=\frac{51}{81}-\frac{40}{81}\)

\(x\times4=\frac{11}{81}\)

\(\Rightarrow x=\frac{11}{81}\div4=\frac{11}{81}\times\frac{1}{4}\)

\(\Rightarrow x=\frac{11}{324}\)

[ 61 + ( 53 - x ) ] . 17 = 1785

61 + ( 53 - x ) = 1785 : 17

61 + ( 53 - x ) = 105

( 53 - x ) = 105 - 61

53 - x = 44

=> x = 53 - 44

=> x = 9

30 tháng 8 2016

Cảm ơn bạn nhiều nha 

\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)

\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)

\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)

\(\Leftrightarrow X=\frac{109}{6075}\)

Vậy X=109/6075

Chắc Sai kết quả chứ công thức đúng nha!!!...

Fighting!!!...

28 tháng 5 2019

Đặt: 

 \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)

=> \(A=\frac{12}{25}\)

Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

   \(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)

=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)

Giải phương trình:

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)

                        \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)

                                                                            \(12x+\frac{12}{25}=11x+\frac{121}{243}\)

                                                                             \(12x-11x=\frac{121}{243}-\frac{12}{25}\)

                                                                                                  \(x=\frac{109}{6075}\)

25 tháng 7 2017

\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)

\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)

\(=3-\left(-1\right)\)

\(=4\)

b)   \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)

       \(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)

     \(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)

      \(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)

    \(=\frac{199}{16}:\left(12-2\right)\)

\(=\frac{199}{16}:10\)

\(=\frac{199}{160}\)

c)   \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)

\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)

\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)

\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)

     

25 tháng 7 2017

giờ mk phải đi ngủ r mai mk làm cho 

23 tháng 6 2015

1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)

   \(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)

 ( . là nhân nha) 

    \(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)

    \(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)

   \(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)

\(x=\frac{113}{8}\)

23 tháng 6 2015

\(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)

   \(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)

\(4y+\frac{49}{81}=\frac{56}{81}\)

\(4y=\frac{7}{81}\)

y      =  7/81:4

y       = 7/324

30 tháng 7 2020

\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)

Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)

Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)

Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)

=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)

30 tháng 7 2020

Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)

\(\Rightarrow A=12a+\frac{12}{25}\)

Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3B-B=1-\frac{1}{243}\)

\(\Rightarrow2B=\frac{242}{243}\)

\(\Rightarrow B=\frac{121}{243}\)

\(\Rightarrow A=11a+B\)

\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)

\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)

\(\Leftrightarrow a=\frac{109}{6075}\)