K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

a)Ta có:\(a^2-ab+b^2=a^2-2.\frac{1}{2}ab+\frac{1}{4}b^2+\frac{3}{4}b^2\)

                                        \(=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\)

                       Vì \(\left(a-\frac{1}{2}b\right)^2\ge0;\frac{3}{4}b^2\ge0\)

              \(\Rightarrow\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Vậy \(a^2-ab+b^2\ge0\)

b)Tương tự với a

20 tháng 6 2017

b)a^2 +ab +b^2 = a^2 +ab +(b/2 )^2+ 3b^2/4 
= (a+b/2)^2 +3b^2/4 sẽ lớn hơn hoặc bằng 0

8 tháng 8 2016

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

8 tháng 10 2016

dễ quá 

dễ quá

mình biêt s

làm đó

1 tháng 1 2022

Áp dụng BĐT Bunhiacopski, ta có:

a2 + b2 >= (a + b)2/2 >= 12/2 = 1/2 (đpcm)

Dấu bằng xảy ra khi a = b = 1/2

4 tháng 9 2017

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

4 tháng 9 2017

Bạn cm hộ mình cô si la dc k mình chưa học đến

26 tháng 9 2018

chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!

2 tháng 5 2022

-Áp dụng BĐT AM-GM ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{4}a^2+b^2\ge ab\\\dfrac{1}{4}a^2+c^2\ge ac\\\dfrac{1}{4}a^2+d^2\ge ad\end{matrix}\right.\)

-Cộng các vế, ta được:

\(\dfrac{3}{4}a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Rightarrow\dfrac{3}{4}a^2+b^2+c^2+d^2+\dfrac{1}{4}a^2\ge ab+ac+ad\) (vì \(\dfrac{1}{4}a^2\ge0\forall a\))

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge ab+ac+ad\left(đpcm\right)\)

-Dấu "=" xảy ra khi \(a=b=c=d=0\)