K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Gọi số bé nhất trong 2 số đó là a (a thuộc N)

=> Số còn lại là a+1

Vì hiệu bình phương của chúng bằng 40 nên ta có phương trình sau:

(a+1)2 - a2 = 40

<=> a2 + 2a + 1 - a2 = 40

2a + 1 = 40

a = 19,5 (k thoả mãn a thuộc N)

Vậy, không tìm được 2 số thoả mãn đề bài

Bạn thử xem lại đề bài xem, vì 2 số tn liên tiếp sẽ 1 lẻ 1 chẵn, bình phương lên cũng 1 lẻ 1 chẵn, vậy hiệu phải là số lẻ chứ

6 tháng 8 2015

Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.

Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.

=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15

12 tháng 6 2015

Bài 2 : 

a+b=5 <=> ( a+b)2=52

          <=> a2+ab+b2=25

         Hay : a2+1+b2=25

               <=> a2+b2=24

Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0

 Theo bài ra , ta có : ( a+2)2-a2= 56

                           <=> a2+4a+4-a2=56

                             <=> 4a=56-4

                              <=> 4a=52

                                <=> a=13

Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15

 

17 tháng 9 2017

Gọi số thứ nhất là và số thứ 2 là b, theo đề bài ta có: 

\(\frac{2}{3}a=\frac{3}{4}b=>\frac{a}{b}=\frac{\frac{3}{4}}{\frac{2}{3}}=\frac{9}{8}=>\frac{a^2}{b^2}=\frac{81}{64}=>\frac{a^2}{81}=\frac{b^2}{64}\)\(a^2-b^2=68\)và \(a,b\in N\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)

=> \(\frac{a^2}{81}=4=>a^2=324=>a=18\)

=> \(\frac{b^2}{64}=4=>b^2=256=>b=16\)

Vậy...

THANK YOU VERY MUCH!!^-^!!

https://olm.vn/hoi-dap/detail/2665043698479.html

8 tháng 11 2021

??????????????????????

1 tháng 1 2018

9 va 11 câu này rất dễ bạn chỉ cần áp dụng hằng đẳng thức \(^{x^2-y^2=\left(x-y\right)\left(x+y\right)}\)là được

1 tháng 1 2018

cảm ơn bạn nha ^^

19 tháng 7 2015

tìm ba số nha tự nhiên nha mấy bạn ^^

25 tháng 7 2020

3 số đó là 4,5,6 nha!

k cho mk!

25 tháng 7 2020

Gọi 3 số tự nhiên cần tìm là: u - 1; u; u + 1

Theo đề bài, ta có:

u(u - 1) + u(u + 1) + (u - 1)(u + 1) = 74

<=> u^2 - u + u^2 + u + u^2 - 1 = 74

<=> 3u^2 - 1 = 74

<=> 3u^2 = 74 + 1

<=> 3u^2 = 75

<=> u^2 = 25

<=> u = 5

Vậy: 3 số đó là: 4, 5, 6