giải phương trình(tìm x)
6x2-(2x+5)(3x+7)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x | - | 0 | + | 1/3 | + | 5/2 | + |
2x-5 | - | - | - | 0 | + | ||
1-3x | - | - | 0 | + | + |
ta có bảng như ở trên
th1: x<0 <=> |x|=-x
2x-5<0 <=> |2x-5|=5-2x
1-3x<0 <=>|1-3x|=3x-1
pt có dạng ; 5-2x+3x-1-x=7
<=>0x=3(vô lí)
th2:0 <=x <1/3 <=>x>0 <=>|x|=x
2x-5<0 <=>|2x-5|=5-2x
1-3x<0 <=>|1-3x|=3x-1
pt có dạng : 5-2x+3x-1+x=7
<=>2x=3 =>x=3/2(ko tm x<1/3)
th3: 1/3<=x <5/2 <=>x>0<=>|x|=x
2x-5<0<=>|2x-5|=5-2x
1-3x>0 => |1-3x|=1-3x
pt có dạng: 5-2x+1-3x+x=7
<=>-4x=1
=>x=-1/4(ko tm)
th4:x>5/2 =>|x|=x
|2x-5|=2x-5
|1-3x|=1-3x
pt có dạng: 2x-5+1-3x+x=7
<=>0x=11(vô lí)
=>pt vô nghiệm
a) 2x + 1 = 15 - 5x
<=> 2x + 5x = 15 - 1
<=> 7x = 14
<=> x = 2
Vậy phương trình có nghiệm duy nhất là x = 2
b) 3x - 2 = 2x + 5
<=> 3x - 2x = 5 + 2
<=> x = 7
Vậy phương trình có nghiệm duy nhất là x = 7
c) x ( 2x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy _______
d) 7 ( x - 2 ) = 5 ( 3x + 1 )
<=> 7x - 14 = 15x + 5
<=> 7x - 15x = 5 + 14
<=> -8x = 19
<=> \(x=-\frac{19}{8}\)
Vậy ______
a) 2x-(3x-5x)=4(x+3)
2x - 3x + 5x = 4x +12
4x = 4x + 12
0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)
b) 5(x-3)-4=2(x-1)+7
5x-15 - 4 = 2x-2 + 7
5x-19 = 2x+5
5x-2x = 5+19
3x = 24
x= 8
c) 4(x+3)=-7X+17
4x +12 = -7x + 17
4x+7x = 17-12
11x = 5
x = 5/11
1) 2x - (3x -5x) = 4(x+3)
\(\Leftrightarrow\)2x +2x = 4x +12
\(\Leftrightarrow\)4x = 4x +12
\(\Leftrightarrow\)0x = 12
Vậy phương trình đã cho vô nghiệm
2) 5(x-3) - 4 = 2(x-1) +7
\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7
\(\Leftrightarrow\) 5x - 1 = 2x +5
\(\Leftrightarrow\) 5x - 2x = 5 +1
\(\Leftrightarrow\) 3x = 6
\(\Leftrightarrow\) x = 2
Vậy tập nghiệm của phương trình là S= {2}
3) 4(x + 3) = -7x + 17
\(\Leftrightarrow\)4x + 12 = -7x +17
\(\Leftrightarrow\)4x + 7x = 17 - 12
\(\Leftrightarrow\) 11x = 5
\(\Leftrightarrow\) x = \(\frac{5}{11}\)
Vậy tập nghiệm của phương trình là S={ \(\frac{5}{11}\)}
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)
\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x-4+\frac{1}{x}=a\)
\(\frac{2}{a}-\frac{7}{a+6}=6\)
\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)
\(\Leftrightarrow6a^2+41a-12=0\)
Nghiệm xấu, bạn coi lại đề
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...