K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2021

a. Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m+3\right)< 0\)

\(\Leftrightarrow-3< m< -1\)

b. Giả sử pt đã cho có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m+3}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\2x_1x_2=\dfrac{2m+6}{m+1}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+2x_1x_2=\dfrac{4m+4}{m+1}=4\)

Vậy \(x_1+x_2+2x_1x_2=4\) là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

NV
19 tháng 1 2021

\(\Delta'=\left(m-1\right)^2-\left(m^2+m\right)=-3m+1>0\Rightarrow m< \dfrac{1}{3}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{x_1+x_2+2}{2}\\x_1x_2=m^2+m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2+2}{2}\right)^2+\dfrac{x_1+x_2+2}{2}\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm nếu cần)

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi mb) tìm m để 3.x1 + 2.x2 = 5m -16c) cho A= x1² + x2² + 6.x1.x2c.1) tìm m để A = -44c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.f) tìm m để phương...
Đọc tiếp

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m

b) tìm m để 3.x1 + 2.x2 = 5m -16

c) cho A= x1² + x2² + 6.x1.x2

c.1) tìm m để A = -44

c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.

d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.

e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.

f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.

g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.

h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.

i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.

j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²

l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.

m) tìm m để x1³ + x2³ <0

n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)

 

3
1 tháng 2 2022

TL :

Đề sai

\(x1^2\)là số gì

HT

1 tháng 2 2022

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

18 tháng 3 2022

1) Để phương trình có hai nghiệm trái dấu thì

\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.

Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.

2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.

Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.

3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.

4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):

A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).

Dấu "=" xảy ra khi x=16/5 (nhận).

Vậy minA=7/16 tại m=16/5.

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m