Cho hai số tự nhiên a và b bất kì. Chứng minh rằng ab(a+b) là số chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử : a là số chẵn, b là số lẻ
Ta có : a . b = chẵn . lẻ = chẵn → Cho dù a + b là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ab = số chẵn )
Giả sử : a là số lẻ, b là số lẻ
Ta có : ( a + b ) = lẻ + lẻ = chẵn → Cho dù ab là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ( a + b ) = số chẵn )
Bonking thiếu nha bạn
Còn 2 trường hợp nữa
Nếu a là số lẻ b là số chẵn
Thì ab là số chẵn => ab(a + b) cũng là số chẵn
Nếu a là số chẵn , b là số lẻ thì mk chịu
a,gọi 2 STN liên tiếp là a và a+1
gọi ước chung của hai số là d. Ta có:
(a+1)-a chia hết cho d
=>1 chia hết cho d=>d=1
Vậy a và a+1 nguyên tố cùng nhau
b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d
Ta có: (a+2)-a chhia hết cho d
=>2 chia hết cho d
=>d=1 hoặc 2
d khác 2 vì d là ước của số lẻ
Vậy d=1 =>a và a+2 nguyên tố cùng nhau
tick đi
Gọi d là ƯC của a và ab+4
=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}
nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)
Tương tự d cũng ko thể bằng 4
Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)
5(3n+2)=15n+10
3(5n+3)=15n+9
hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau
Nếu a hoặc b là số chẵn hoặc cả a;b là số chẵn => ab(a+b) là số chẵn
Nếu a;b là số lẻ => a+b chẵn => ab(a+b) chẵn
Vậy ab(a+b) là số chẵn với a;b là các số tự nhiên bất kì