\(\frac{3}{1\cdot2}+\frac{3}{2\cdot3}+\frac{3}{3\cdot4}+................................................+\frac{3}{99\cdot100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)
\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)
\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Rightarrow k=2\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
\(C=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+....+\frac{99.100-1}{100!}\)
\(\Rightarrow C=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(\Rightarrow C=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(\Rightarrow C=\left(2+\frac{3.4}{4!}+\frac{4.5}{5!}+....+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{10!}\right)\)
\(\Rightarrow C=\left(2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(\Rightarrow C=2-\frac{1}{99!}-\frac{1}{100!}< 2\Rightarrow C< 2\)
\(b,C=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{19}{9^2.10^2}\)
\(\Rightarrow C=\frac{3}{\left(1.2\right)\left(1.2\right)}+\frac{5}{\left(2.3\right)\left(2.3\right)}+...+\frac{19}{\left(9.10\right)\left(9.10\right)}\)
\(\Rightarrow C=\frac{3}{1.2}.\frac{1}{1.2}+\frac{5}{2.3}.\frac{1}{2.3}+....+\frac{19}{9.10}.\frac{1}{9.10}\)
\(\Rightarrow C=\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{9}+\frac{1}{10}\right)\left(\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{90}\)
\(\Rightarrow C=1-\frac{1}{90}< 1\Rightarrow C< 1\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}\)
\(\Rightarrow B=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
Ta có công thức:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\left(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}\right)-\frac{1}{100}\)
\(=\frac{1}{1}+0-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
1/1.2 + 1/2.3 + 1/3.4 +......+1/99.100
= 1/1 + -1/2 + 1/2 + -1/3 + 1/3 + -1/4 +1/4 +.....+ -1/99 + 1/99 + -1/100
= [ ( -1/2 +1/2) +( -1/3+1/3) + (-1/4 + 1/4) +..... +( -1/99+1/99 ) ] + ( 1/1 + -1/100 )
= 0 + 99/100
= 99/100
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
Đặt A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+.....+\frac{3}{99.100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3}A\)\(=1-\frac{1}{100}\)
=> \(\frac{1}{3}A=\frac{99}{100}\)
=> A = \(\frac{99}{100}.3=\frac{297}{100}\)
\(\frac{3}{1.2}+\frac{3}{2.3}+..................+\frac{3}{99.100}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+..................+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.................+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)