K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

bạn xem tại đây: http://olm.vn/hoi-dap/question/119886.html

19 tháng 8 2016

giúp mk vs 

19 tháng 8 2016

gúp mk đi mk cho

6 tháng 7 2015

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{2014.a}{2014c}=\frac{2015b}{2015d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2014a}{2014c}=\frac{2015b}{2015d}=\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)

=>\(\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)

=> (2014a-2015b).(2014c+2015d)=(2014c-2015d).(2014a+2015b)

=>\(\frac{2014a-2015b}{2014a+2015b}=\frac{2014c-2015d}{2014c+2015d}\)

24 tháng 10 2021

Gạevdhbdvd

24 tháng 10 2021

Gkykdyhlculxys

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_  với d ( H thuộc d, K thuộc d )a) CMR AH = CK. Từ đó => HK = BH + CKb) Gọi m là trung điểm của BC. CMR MH = MK2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa   b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^23.Cho tam...
Đọc tiếp

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_  với d ( H thuộc d, K thuộc d )

a) CMR AH = CK. Từ đó => HK = BH + CK

b) Gọi m là trung điểm của BC. CMR MH = MK

2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa

   b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^2

3.Cho tam giác ABC có ^A = 60'. Các đg phân giác BD ( D thuộc AC ) và  CE ( E thuộc AB ) cắt nhau tại I. Trên cạnh BC lấy điểm M sao cho BM = BE. CMR:

a) IE = IM

b) BC = BE + CD

4.Cho tam giác ABC có AB < AC .Gọi M là trung điểm của BC, từ M kẻ đg thẳng _|_ với tia phân giác của ^A cắt các đg thẳng AB, AC lần lượt tại E va F. Chứng minh rằng:

a) AE = AF

b) AE = AB + AC / 2

0
29 tháng 4 2019

Ta có : \(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)

\(\Rightarrow\) \(2014+\frac{b^2+c^2}{a^2}=2014+\frac{a^2+c^2}{b^2}=2014+\frac{a^2+b^2}{c^2}\)

\(\Rightarrow\) \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\) (Vì \(a^2+b^2+c^2\ne0\))

Suy ra: \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)

\(\Rightarrow\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)

\(\Rightarrow\) \(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}=\frac{6}{2}=3\)

Lại có: \(P=\)\(\frac{2015a^2+b^2}{c^2}+\frac{2015a^2+c^2}{b^2}+\frac{2015b^2+c^2}{a^2}\)

\(=2015\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)\)

\(=\left(2015+1\right)\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016.3=6048\)

Vậy \(P=6048\)

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_ với d ( H thuộc d, K thuộc d ) a) CMR AH = CK. Từ đó => HK = BH + CK b) Gọi m là trung điểm của BC. CMR MH = MK 2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^2 3.Cho tam giác ABC...
Đọc tiếp

1.Cho tam giác ABC có ^ABC = ^ACB = 45'. Qua A kẽ đg thẳng d sao cho B và C nằm cùng phía đối với đg thẳng d. Kẻ BH và CK cùng _|_ với d ( H thuộc d, K thuộc d )

a) CMR AH = CK. Từ đó => HK = BH + CK

b) Gọi m là trung điểm của BC. CMR MH = MK

2.a) cmr nếu a/b = c/d thì 2014a + 20115b/2014a - 2015b = 2014c + 2015d/2014c - 2015d. Dả thiết các tỉ số đều có nghĩa

b) tìm các số nguyên x, y thỏa mãn 25 - y^2 = 8(x - 2014)^2

3.Cho tam giác ABC có ^A = 60'. Các đg phân giác BD ( D thuộc AC ) và CE ( E thuộc AB ) cắt nhau tại I. Trên cạnh BC lấy điểm M sao cho BM = BE. CMR:

a) IE = IM

b) BC = BE + CD

4.Cho tam giác ABC có AB < AC .Gọi M là trung điểm của BC, từ M kẻ đg thẳng _|_ với tia phân giác của ^A cắt các đg thẳng AB, AC lần lượt tại E va F. Chứng minh rằng:

a) AE = AF

b) AE = AB + AC / 2

giải dùm nhen!!!!!!!!!!!heheeoeoleuleu

3
4 tháng 1 2017

mik không hiểu đề bài câu 1) cho lắm ..cko mik xin cái hình câu 1) đk k ạ .

4 tháng 1 2017

mik ko bít mới đăng lên chứ!!!!

thông cảm nhak!!!hì hìleuleuleuleuleuleu

15 tháng 5 2015

Ủa tui tưởng bài này ỏ lớp 7 cơ ch71, lớp 6 có rùi sao

 

15 tháng 5 2015

từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\) 

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)