chứng minh định lí pytago
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\Delta ABC\)có: \(AB^2+AC^2=BC^2\)đường cao \(AH\)
Chứng minh: \(\Delta ABC\)vuông tại A (tức Pytago đảo)
Bài làm
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Theo giả thiết ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(AH^2=BH.CH\) \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có:
\(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)
\(\widehat{AHB}=\widehat{CHA}=90^0\)
suy ra: \(\Delta ABH~\Delta CAH\)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)
suy ra: \(\widehat{BAC}=90^0\)
Trong 1 tam giac vuong co ti le cua 3 canh
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ)
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2)
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi
Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt
Link đây bạn xem thử :
http://www.vnmath.com/2012/02/chung-minh-inh-li-pi-ta-go-bang-nhieu.html
a: \(MN=\sqrt{16^2+12^2}=20\left(cm\right)\)
b: Xét ΔPMQ và ΔNSQ có
QP=QN
\(\widehat{PQM}=\widehat{NQS}\)
QM=QS
Do đó: ΔPMQ=ΔNSQ
trong 1 tam giác vuông có tỉ lệ 3 cạnh
đầu tiên bình phương của cạnh huyền bạn bình phương tỉ số đó lên (rồi đánh 1 số nhỏ)
sau đó tổng bình phương 2 cạnh còn lại rồi tính ra cộng lại bằng số bình phương của cạnh huyền (đánh số 2)
từ (1),(2) \(\Rightarrow\)tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
vậy là ok rồi đó
chúc bạn học tốt
nhớ k nha
hhhh
Vì BC2 = AB2 + AC2 => tam giác ABC vuông ( định lý Py - ta - go đảo )
Vậy tam giác ABC vuông
Vương Đại Nguyên đg cần chứng minh định lý pytago đảo mà bạn
Sao cậu không tra trên google
Các cách chứng minh định lý pytago là :
Link :
www.bachkhoatrithuc.vn - Các cách chứng minh định lý Pitago,
Định lý có thể chứng minh bằng phương pháp đại số khi sử dụng 4 tam giác vuông bằng nhau có các cạnh a, b và c, các tam giác này được sắp xếp thành một hình vuông lớn có cạnh là cạnh huyền c. Các tam giác bằng nhau có diện tích , khi đó hình vuông nhỏ bên trong có cạnh là b − a và diện tích là (b − a)2.