K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

27 tháng 7 2019

\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}=\frac{2017\sqrt{2017}+2018\sqrt{2018}}{\sqrt{2017}\cdot\sqrt{2018}}\)

\(=\left(\sqrt{2017}+\sqrt{2018}\right)\cdot\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2017\cdot2018}}\)

Ta thấy \(\frac{2017+2018-\sqrt{2018\cdot2017}}{\sqrt{2018\cdot2017}}=\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\)

Áp dụng ĐBT Cô si thì \(\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}\ge2\Rightarrow\frac{\sqrt{2017}}{\sqrt{2018}}+\frac{\sqrt{2018}}{\sqrt{2017}}-1\ge1\)

\(\Rightarrow\sqrt{2017}+\sqrt{2018} < \frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\)

21 tháng 7 2018

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

23 tháng 6 2017

không thể cm

8 tháng 10 2021

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

22 tháng 5 2020

Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)

Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)

Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)

Từ (1), (2) => Sai

22 tháng 5 2020

a) Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,....,n rồi cộng từng vế ta có:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)

NV
5 tháng 7 2020

\(A=\frac{\sqrt{2017}^2}{\sqrt{2018}}+\frac{\sqrt{2018}^2}{\sqrt{2017}}\ge\frac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu "=" ko xảy ra nên \(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}>\sqrt{2018}+\sqrt{2017}\)

9 tháng 3 2019

ai lam nhanh ma dung minh h cho 

cac ban nho giai ho minh nhe

9 tháng 3 2019

\(\frac{2018}{\sqrt{2017}}+\frac{2017}{\sqrt{2018}}=\frac{2017}{\sqrt{2017}}+\frac{2018}{\sqrt{2018}}+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}=\sqrt{2017}+\sqrt{2018}\)

\(\frac{1}{\sqrt{2017}}>\frac{1}{2018}\Rightarrow VT>\sqrt{2017}+\sqrt{2018}\)