K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Chứng minh các tứ giác ABHF và BMFO nội tiếp.

- Từ giả thiết suy ra: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

=> H và F thuộc đường tròn đường kính AB (quỹ tích cung chứa góc)

Vậy tứ giác ABHF nội tiếp đường tròn đường kính AB

- Gọi M là trung điểm của BC (gt), suy ra: OM ⊥ BC

Khi đó: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên M, F thuộc đường tròn đường kính OB(quỹ tích cung chứa góc).

Vậy tứ giác BMOF nội tiếp đường tròn đường kính OB

* Chứng minh HE // BD.

Dễ chứng minh tứ giác ACEH nội tiếp đường tròn đường kính AC.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Và chúng ở vị trí so le trong suy ra: HE // BD

a)

Xét (O) có

M là trung điểm của dây BC(gt)

nên OM\(\perp\)BC(Định lí đường kính vuông góc với dây)

Xét tứ giác BMOF có 

\(\widehat{BFO}+\widehat{BMO}=180^0\left(90^0+90^0=180^0\right)\)

nên BMOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

9 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AE // OC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE

16 tháng 3 2021

answer-reply-image

Bạn tham khảo nhé!

16 tháng 7 2020

E 1 A H O B C F d

a. Ta có: \(OC\perp d\)(tính chất tiếp tuyến)

\(AE\perp d\) (gt)

\(BF\perp d\) (gt)

Suy ra : OC // AE // BF

Mà OA = OB (= R)

Suy ra: CE = CF ( tính chất đường thẳng song song cách đều )

b. Ta có: AE // OC

\(\Rightarrow\widehat{OCA}=\widehat{EAC}\)( hai góc so le trong ) ( 1 )

Ta có : \(OA=OC\left(=R\right)\)

\(\Rightarrow\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)( 2 )

Từ (1)(2) suy ra : \(\widehat{EAC}=\widehat{OAC}\)

Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE

c. Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90o

Tam giác ABC vuông tại C có \(CH\perp AB\)

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

CH2 = HA . HB     (3)

Xét hai tam giác ACH và ACE, ta có :

\(\widehat{AEC}=\widehat{AHC}=90^o\)

CH = CE (tính chất đường phân giác)

AC chung

Suy ra : \(\Delta ACH=\Delta ACE\) (cạnh huyền, cạnh góc vuông)

Suy ra: AH = AE     (4)

Xét hai tam giác BCH và BCF, ta có :

\(\widehat{AHC}=\widehat{BFC}=90^o\)

CH = CF (= CE)

BC chung

Suy ra:  \(\Delta BCH=\Delta BCF\) (cạnh huyền, cạnh góc vuông)

Suy ra: BH = BF     (5)

Từ (3), (4) và (5) suy ra: CH2 = AE . BF

28 tháng 5 2017

1.khỏi cần nói nhiều

2. Ta có TG AHB vuông => AD.AB = AH^2 (1)

             TG AHC vuông =>AE.AC = AH^2 (2) Từ 1 và 2 => AD.AB=AE.AC

Cái vẽ đường kính OAK là cái hell gì vậy

28 tháng 5 2017

là kẻ AO giao vs đường tròn tại K