Tìm phần dư khi chia đa thức P(x)=\(^{x^{100}-2x^{51}+1}\)cho đa thức Q(x)=\(x^2-1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TG
0
TG
0
DC
0
2 tháng 1 2018
Cho abc thuộc N* thỏa mãn a^2+b^2=c^2+d^2.cmr :a+b+c+d là hợp số
TD
18 tháng 3 2021
Áp dụng định lý Bezout ta được:
chia cho x+1 dư 2
Vì bậc của đa thức chia là 3 nên
Vì nên
Vì f(x) chia cho dư 2x+3 nên
Từ (1) và (2)
Vậy dư f(x) chia cho là
vì đa thức chia là Q(x) bậc hai nên đa thức dư có dạng ax + b.
khi đó P(x) = Q(x). K(x) + ax +b.
lại có Q(x) có 2 nghiệm là 1 và - 1 nên ta có:
P(1) = a + b
P(-1) = -a + b.
mà P(1) = 0; P(-1) = 4. thay vào trên giải hệ ta tìm được a và b.