cho hàm số y=f(x)=\(\frac{12x-2}{4x+1}\)
a,tìm các giá trị nguyên để f(x)là số nguyên
b, tìm x để f(x) lớn hơn 0 và nhỏ hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đạo hàm f'(x) = 2 - m x 2 ( x + 1 ) x ( x + 1 )
f'(x) = 0 ⇒ x = 2 m ↔ x = m 2 4 ∈ [ 0 ; 4 ] , ∀ m > 1
+ Lập bảng biến thiên, ta kết luận được
m a x [ 0 ; 4 ] f ( x ) = f ( 4 m 2 ) = m 2 + 4
+ Vậy ta cần có m 2 + 4 < 3
↔ m < 5 → m > 1 m ∈ ( 1 ; 5 )
Chọn C.
Chọn D
· Bổ trợ kiến thức: Để cho bài toán được dễ hiểu hơn các em có thể nghĩ hướng giải một cách đơn giản như sau, đầu tiên là các em dùng kiến thức về min, max của hàm số để tìm các GTLN và GTNN của hàm số ( kể cả có tham số hay không có tham số ), sau đó giải quyết min > –1 vậy là hoàn thành xong bài toán.
Bước khó khăn của bài toán trên là bước tìm min của
do gặp phải tham số k nhưng nếu dùng các kĩ thuật sơ cấp để xử lí và dễ tìm thấy được ,
khi đó ta chỉ cần tìm k sao cho min y > –1 vậy là ta chọn được đáp án đúng.
a) \(\frac{12x-2}{4x+1}=\frac{12x+3-5}{4x+1}=3-\frac{5}{4x+1}\)
Để f(x) là số nguyên thì 5 chia hết cho (4x+1)
----------lập bảng-------
suy ra x = { 0;1}
b, *f(x)> 0
=> \(\hept{\begin{cases}12x-2>0\\4x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x>-\frac{1}{4}\end{cases}}\Rightarrow x>\frac{1}{6}\)hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1< 0\end{cases}\Rightarrow x< -\frac{1}{4}}\)
Suy ra f(x)>0 khi \(\orbr{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}\)
*f(x)<0
=> \(\hept{\begin{cases}12x-2>0\\4x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{6}\\x< -\frac{1}{4}\end{cases}}}\)(loại)
hoặc \(\hept{\begin{cases}12x-2< 0\\4x+1>0\end{cases}\Rightarrow-\frac{1}{4}< x< \frac{1}{6}}\)
Vậy f(x) < 0 khi -1/4 <x<1/6
thanks b