cho tam giac ABC can tai A (goc A < 90 đo ) ve BD vuong goc AC va CE vuong goc AB goi H la giao diem cua BD va CE
a) c/m tam giac ABD =tam giac ACE
b) c/m tam giac AED can
c) c/m AH la duong trung truc cua ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đơn giản rồi nên em tự kẻ ra nhé!
a, Xét ΔABD và ΔACE có:
\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)
AB=AC(2 cạnh bên Δ cân ABC)
\(\widehat{A}\) chung
=>ΔABD=ΔACE(g.c.g)(đpcm)
b, Vì AE=AD
và HE=HD
=>AH là đường trung trực của ED(đpcm)
c, Xét ΔDKC và ΔDBC có:
\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)
BD=KD(gt)
DC là cạnh chung
=>ΔDKC=ΔDBC(c.g.c)
DBC=DKC(2 cạnh tương ứng) (1)
BH=CH
=>ΔHBC cân tại H
=>DBC=ECB(2 góc ở đáy Δ cân) (2)
Từ (1) và (2)=>ECB=DKC(đpcm)
Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!
a) Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{EAD:}chung\)
\(AB=AC\)
\(\widehat{ABD}=\widehat{AEC}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta AEC\left(ch-gn\right)\)
\(\Rightarrow BD=CE\left(dpcm\right)\)
b)Xét \(\Delta BEC\)và \(\Delta CDB\)có :
\(CE=BD\left(cmt\right)\)
\(\widehat{BEC}=\widehat{CDB}=90^o\)
\(BC:chung\)
\(\Rightarrow\Delta BEC=\Delta CDB\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CBD}\)
a)Xét tam giác ABD và tam giác ACE ( đều vuông ) ta có:
\(AB=AC\left(GT\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )
b)Vì \(\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )
\(\Rightarrow AD=AE\Rightarrow\Delta AED\) cân tại A
c)Xét tam giác AEH và tam giác ADH ( đều vuông ) ta có:
\(AE=AD\left(GT\right)\)
Cạnh AH chung
\(\Rightarrow\Delta AEH=\Delta ADH\)( Cạnh góc vuông cạnh huyền )
\(\Rightarrow\widehat{EAH}=\widehat{DAH}\)(cặp góc vuông tương ứng)
\(\Rightarrow\)AH là tia p/giác của tam giác ABC
Mà tam giác ABC lại cân
Nên AH cũng là đoạn thẳng trung tuyến, cũng là đoạn thẳng vuông góc ( còn gọi là đường trung trực)