K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Toán lớp 8.............

14 tháng 8 2016

a) \(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)

\(=\sqrt{91.144-1440}=\sqrt{144\left(91-10\right)}=\sqrt{12^2.9^2}=12.9=108\)

b) \(\sqrt{146,5^2-109,5^2+27.256}=\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)

\(=\sqrt{37.256+27.256}=\sqrt{256\left(37+27\right)}=\sqrt{256.64}=\sqrt{16^2.8^2}=16.8=128\)

26 tháng 6 2017

\(\sqrt{117,5^2-26,5^2}-1440=-202475\)

\(\sqrt{146,5^2-109,5^2+27,256=}-11816494\) 

26 tháng 6 2017

bạn lê nhat phuong oi sai rồi

30 tháng 5 2017
  1. \(\sqrt{\frac{2ab^2}{162a}}=\sqrt{\frac{b^2}{81}}=\frac{|b|}{9}\)
  2. \(2y^2\sqrt{\frac{x^4}{4y^2}}=\frac{2y^2x^2}{-2y}=-yx^2\)
9 tháng 6 2017

2)

  • \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003\times2005}\)

\(=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}=4008+2\sqrt{2004^2-1}\)

  • \(\left(\sqrt{2004}+\sqrt{2004}\right)^2=2004+2004+2\sqrt{2004\times2004}\)

\(=4008+2\sqrt{2004^2}\)

Ta có \(2004^2>2004^2-1\Rightarrow\sqrt{2004^2}>\sqrt{2004^2-1}\Rightarrow4008+2\sqrt{2004^2}>4008+2\sqrt{2004^2-1}\)

Vậy \(2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)

26 tháng 5 2017

1.  a) 108
     b) 128
2.  >

18 tháng 7 2017

\(a=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\left(10\right)}=\sqrt{36}=6\)

21 tháng 9 2017

a) \(\sqrt{6,8^2-3,2^2}=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}\)

=\(\sqrt{3,6.10}=\sqrt{36}=6\)

b)\(\sqrt{21,8^2-18,2^2}=\sqrt{\left(21,8-18,2\right)\left(21,8+18,2\right)}\)

=\(\sqrt{3,6.40}=\sqrt{144}=12\)

c)\(\sqrt{117,5^2-26,5^2-1440}=\sqrt{\left(117,5-26,5\right)\left(117,5+26,5\right)-1440}\)

=\(\sqrt{91.144-1440}=\sqrt{144.81}=\sqrt{144}.\sqrt{81}=108\)

d)\(\sqrt{146,5^2-109,5^2+27.256}\)=\(\sqrt{\left(146,5-109,5\right)\left(146,5+109,5\right)+27.256}\)

=\(\sqrt{37.256+\sqrt{27.256}}=\sqrt{64.256}=\sqrt{64}.\sqrt{256}=128\)

14 tháng 1 2016

\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0

\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)

b) P = 3

\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)

\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

14 tháng 1 2016

Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)

giải thích hộ mình với nhé. Cảm ơn nhiều !!

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\)

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

12 tháng 3 2023

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}+2}{\sqrt{x}-2}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2}\) (\(đk:x\ge0;x\ne\sqrt{2}\))

\(=\dfrac{2x+4\sqrt{x}}{x-4\sqrt{x}+4}\)

\(\)