cmr:
nếu (a+b+c)^2=3(ab+bc+ac)thì a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
(a + b + c)^2=3(ab+ac+bc)
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0
<=>a^2+b^2+c^2-ab-ac-bc=0
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a = b = c
Vô đây tham khảo nhé
Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 8 - Học toán với OnlineMath
Chúc bạn học giỏi
Good Luck