CMR biểu thức: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
ngu như bò phân tích 2 cái đăng sau nó chia hết cho 18 cái thứ nhất chia hết cho 5 mà hai số có uwcln là 1 suy ra đpcm
mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17
62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17
vay bt chia het 17
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>
Sử dụng đồng dư
Ta có:
\(\left(n+5\right)\left(n-2\right)+21=n^2+5n-2n-10+21=n^2+3n+11\)
Giả sử:
\(n^2\equiv49\)(mod 49)
\(n\equiv7\)(mod 49)
Ta có:
\(\left(n+5\right)\left(n-2\right)+21\equiv7^2+3\cdot7+11\equiv81\)(mod 49)
Mà 81 ko chia hết cho 49 nên
Kết luận ......................
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n