tìm 1 số tự nhiên có 4 chữ số thỏa mãn điều kiện sau :
+ Là số lẻ lớn nhất
+ chia cho 5 dư 2
+ tổng các chữ số bằng 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1) 254;524;542;452
2) 245;425
b) 1) 756
2) 675
c) 1) 425
2) 254
a)
1) số 452; 542; 254; 524 chia hết cho 2
2) số 245; 425 chia hết cho 5
b)
1) 756
2) 675
c)
1) 425
2) 254
học tốt!!!
Bài 1: Để số tự nhiên cần tìm lớn nhất có thể thì tổng các chữ số của nó bé nhất có thể. Vậy số tự nhiên cần tìm có 4 chữ số.
Gọi số cần tìm là abcd. Theo đầu bài ta có:
abcd + a + b + c + d = 2015
=> ( a * 1000 + a ) + ( b * 100 + b ) + ( c * 10 + c ) + ( d + d ) = 2015
=> a * 1001 + ( b * 101 + c * 11 + d * 2 ) = 2015
=> 2015 / 1001 = a ( dư b * 101 + c * 11 + d * 2 )
Mà 2015 / 1001 = 2 ( dư 13 )
=> a = 2
=> b * 101 + ( c * 11 + d * 2 ) = 13 => 13 / 101 = b ( dư c * 11 + d * 2 )
Mà 13 / 101 = 0 ( dư 13 )
=> b = 0
=> c * 11 + d * 2 = 13 => 13 / 11 = c ( dư d * 2 )
Mà 13 / 11 = 1 ( dư 2 )
=> c = 1
=> d * 2 = 2 => d = 1
Vậy số cần tìm là 2011.
Gọi số cần tìm là : abcd
Vì abcd là số lẻ lớn nhất mà chia 5 dư 2
Nên d chỉ có thể bằng 7
Vì a + b + c + d = 9 nên a + b + c + 7 = 9
=> a + b + c = 2
Vì a là số đầu nên ko thể la số 0
=> Số đó là : 1017