tìm min, max nếu có của A= (4x^2-6x+1)/[(x-2)^2]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(A=-x^2+6x+2=-\left(x-3\right)^2+11\le11\)
Vậy Max \(A=11\)khi \(x=3\)
\(B=-x^2-4x=-\left(x+2\right)^2+4\le4\)
Vậy Max \(B=4\)khi \(x=-2\)
\(C=-2x^2+6x+3=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\)
Vậy Max \(C=\frac{15}{2}\)khi \(x=\frac{3}{2}\)
Giang sai rồi nhá , nó ko chỉ có max đâu , nó có cả Min nữa đấy
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn