\(\left(\frac{2x+1}{x+\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\right)\times\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
Lời giải:
Coi yêu cầu đề là rút gọn. Lần sau bạn chú ý viết đầy đủ đề.
ĐK: $x>0; x\neq 1$
Gọi biểu thức đã cho là $P$. Ta có:
\(P=\frac{x-2+\sqrt{x}}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{(\sqrt{x}-1)(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+2)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
ĐK \(x\ge0,x\ge1,x\ge-1\)
=(\(\frac{2x+1}{x+\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\) ) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
= ( \(\frac{2x+1-\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\) ) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
= \(\left(\frac{2x+1-x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\) .\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
= \(\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
=\(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\) .\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)
=\(\frac{x-\sqrt{x}}{x}\)