chứng tỏ đa thức ko có nghiệm.
G(x)= 2x4 + x2 + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
a.
\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)
\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)
\(=x^4+5x^3-x^2+x+3\)
\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)
\(=-x^4-5x^3+3x^2-x-2\)
b.
\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)
\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)
\(=2x^2+1\)
c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)
\(\Rightarrow2x^2+1=0\)
\(2x^2\) \(=-1\)
\(x^2\) \(=\frac{-1}{2}\)
mà \(x^2\ge0\)
\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm
học tốt
Nhớ kết bạn với mình đó
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
A(\(x\)) = \(x^2\) + \(x\) + \(\dfrac{3}{4}\)
A(\(x\)) = (\(x^2\) + 2\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) + \(\dfrac{2}{4}\)
A(\(x\)) = (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\)
Vì (\(x+\dfrac{1}{2}\))2 ≥ 0 ⇒ (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\) ≥ \(\dfrac{2}{4}\)
⇒ \(x^2\) + \(x\) + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
Vậy A(\(x\)) = 0 vô nghiệm (đpcm)
`@` `\text {Ans}`
`\downarrow`
Ta có: \(x^2\ge0\text{ }\forall\text{ x}\)
`->`\(x^2+x+\dfrac{3}{4}\ge\dfrac{3}{4}>0\text{ }\forall\text{ x}\)
Mà `3/4 \ne 0`
`->` Đa thức vô nghiệm.
a: \(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để dư bằng 0 thì -3x+7=0
=>x=7/3
b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}\)
\(=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)
\(=x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)
Để đư bằng 0 thì 2x-4=0
=>x=2
`@` `\text {dnv4510}`
`A)`
`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)
`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`
`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`
`= 3x^4+x^3-x^2+2x+7`
`B)`
`P(x)+M(x)=2Q(x)`
`-> M(x)= 2Q(x) - P(x)`
`2Q(x)=2(x^4+x^3-x^2+2x+1)`
`= 2x^4+2x^3-2x^2+4x+2`
`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`
`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`
`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`
`= 2x^3-2x^2+4x-4`
Vậy, `M(x)=2x^3-2x^2+4x-4`
`C)`
Thay `x=-4`
`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`
`= 2*(-64)-2*16-16-4`
`= -128-32-16-4`
`= -180`
`->` `x=-4` không phải là nghiệm của đa thức.
2x4>hoac =0
x2> hoac =0
=> 2x4+x2+3 >0
=> đa thức trên k có nghiệm........
ta có: 2x4 >=0; x2>=0; 3>0
Suy ra: 2x4 + x2 + 3 >0 hay G(x) khác 0
vậy G(x) vô nghiệm