hay xet xem khang dinh sau dung hay sai voi moi so nguyen duong m n thi
giá trị tuyệt đối của\(\frac{m}{n}-\sqrt{2}>=\frac{1}{n^{2\left(\sqrt{3}+\sqrt{2}\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)
\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)
\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)
bạn ơi đáng lẽ dưới mẫu phải là 1 chứ \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)mà
câu 2:DKXĐ: x \(\ge\)\(\frac{-1}{3}\);\(x\ne0\);1
PT\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-\frac{1}{x^2}=\sqrt{x+2}-\sqrt{3x+1}\)
\(\Leftrightarrow\frac{x^2-\left(x^2-2x+1\right)}{x^2\left(x-1\right)^2}=\frac{x+2-3x-1}{\sqrt{x+2}+\sqrt{3x-1}}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{x^2\left(x-1\right)^2}+\frac{1}{\sqrt{x+2}+\sqrt{3x+1}}\right)=0\)
vì \(\frac{1}{x^2\left(x-1\right)^2}+\frac{1}{\sqrt{x+2}+\sqrt{3x+1}}\ne0\)nên pt có nghiệm x= \(\frac{1}{2}\)
giả sử có tồn tại số TN n để \(2012+n^2\)là SCP
đặt \(2012+n^2=m^2\Leftrightarrow\left(m+n\right)\left(m-n\right)=2012\)(m thuộc Z)
m+n>m-n .ta có bảng:
m+n | 2012 | 1006 | 503 | -1 | -2 | -4 |
m-n | 1 | 2 | 4 | -2012 | -1006 | -503 |
m | .. | .. | .. | .. | .. | .. |
n | .. | .. | .. | .. | .. | .. |
giải bảng trên kết hợp với Đk n là số TN, ta thu được n=502 khi m=504 hoặc -504
a, bạn chỉ cần lập công thức tông quát :
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra
a, kq : 4/5
b,\(1-\frac{1}{\sqrt{n+1}}\)
c,d chưa nghĩ ra