chứng minh dấu hiệu chia hết cho 11 bằng đồng dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Dấu hiệu chia hết cho 11: Tổng các chữ số hàng lẻ – Tổng các chữ số hàng chẵn hoặc ngược lại chia hết cho 11.
nếu là số có 2 chữ số thì cứ 2 số giống nhau tạo thành 1 số có 2 chữ số chia hết cho 11
a) Có tận cùng là 0 hoặc 5 và tổng các chữ số chia hết cho 9
b) - tổng các chữ số chia hết cho 9
- Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11.
c) Có tận cùng là 0 và tổng các chữ số chia hết cho 3
d)
Nếu số lớn hơn 99:
- Một số chia hết cho 4 khi 2 chữ số cuối của số đó là số 0 hoặc tổng 2 số cuối cùng chia hết cho 4.
- Ví dụ: 14676 chia hết cho 4 vì 2 chữ số cuối cùng 76 tạo thành một số chia hết cho 4 (76/4 = 19). Số 345200 cũng chia hết cho 4 vì 2 chữ số cuối là số không.
Nếu số nhỏ hơn 99:
- Số chỉ chia hết cho 4 khi ta nhân đôi chữ số hàng chục và cộng thêm chữ số hàng đơn vị, nếu kết quả này chia hết cho 4 thì số ban đầu sẽ chia hết cho 4.
- Ví dụ: số 64, số hàng chục ở đây là 6, chúng ta cần nhân đôi số này và cộng thêm chữ số cuối: 2 * 6 + 4 = 16, 16 chia hết cho 4 do đó 64 chia hết cho 4.
- Hoặc số 96 = 9.2 + 6 = 24 /4 = 6 nên 96 chia hết cho 4.
- Số 47 = 4.2 + 7 = 15 không chia hết cho 4 nên 47 không chia hết cho 4
Nếu số lớn hơn 99:
- Một số chia hết cho 4 khi 2 chữ số cuối của số đó là số 0 hoặc tổng 2 số cuối cùng chia hết cho 4.
- Ví dụ: 14676 chia hết cho 4 vì 2 chữ số cuối cùng 76 tạo thành một số chia hết cho 4 (76/4 = 19). Số 345200 cũng chia hết cho 4 vì 2 chữ số cuối là số không.
Nếu số nhỏ hơn 99:
- Số chỉ chia hết cho 4 khi ta nhân đôi chữ số hàng chục và cộng thêm chữ số hàng đơn vị, nếu kết quả này chia hết cho 4 thì số ban đầu sẽ chia hết cho 4.
- Ví dụ: số 64, số hàng chục ở đây là 6, chúng ta cần nhân đôi số này và cộng thêm chữ số cuối: 2 * 6 + 4 = 16, 16 chia hết cho 4 do đó 64 chia hết cho 4.
- Hoặc số 96 = 9.2 + 6 = 24 /4 = 6 nên 96 chia hết cho 4.
- Số 47 = 4.2 + 7 = 15 không chia hết cho 4 nên 47 không chia hết cho
- - Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11.
- ( k ) đúng cho mình nha !
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
10 đong dư với -1 (mod 11)