Tìm các số nguyên dương x, y thỏa mãn \(\left(x+y\right)^5\ge100x+43\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sử dụng công thức
(a+b) ^5 =a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^4
hok tốt
Ta có \(\left(x+y\right)^3=\left(x-y-6\right)^2\left(1\right)\)
Vì x,y nguyên dương nên
\(\left(x+y\right)^3>\left(x+y\right)^2\)kết hợp (1) ta được:
\(\left(x-y-6\right)^2>\left(x+y\right)^2\Leftrightarrow\left(x+y\right)^2-\left(x-y-6\right)^2< 0\Leftrightarrow\left(x-3\right)\left(y+3\right)< 0\)
Mà y+3 >0 (do y>0)\(\Rightarrow x-3< 0\Leftrightarrow x< 3\)
mà \(x\inℤ^+\)\(\Rightarrow x\in\left\{1;2\right\}\)
*x=1 thay vào (1) ta có:
\(\left(1+y\right)^3=\left(1-y-6\right)^2\Leftrightarrow y^3+3y^2+3y+1=y^2+10y+25\Leftrightarrow\left(y-3\right)\left(y^2+5y+8\right)=0\)
mà \(y^2+5y+8=\left(y+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
\(\Rightarrow y-3=0\Leftrightarrow y=3\inℤ^+\)
*y=2 thay vào (1) ta được:
\(\left(2+y\right)^3=\left(2-y-6\right)^2\Leftrightarrow y^3+6y^2+12y+8=y^2+8y+16\Leftrightarrow y^3+5y^2+4y-8=0\)
Sau đó cm pt trên không có nghiệm nguyên dương.
Vậy x=1;y=3
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Lời giải:
Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)
Thực hiện biến đổi P
\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)
\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)
\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)
\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)
\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)
Tìm max:
Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)
Vì \(x\) nguyên dương \(\Rightarrow x\geq 1\)
\(y\geq 1\Rightarrow x=2017-y\leq 2016\)
Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)
Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị
Tìm min:
Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)
Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)
Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.