a, Tìm x thuộc N để \(\frac{19}{x+1}.\frac{x}{6}\) là số nguyên
b, Tìm n thuộc N để \(\frac{3n+1}{7}\) có giá trị nhỏ nhất
Làm nhanh giùm mình!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
a) (Có nhiều cách nhưng mình sẽ làm cách dễ hiểu nhất)
A = \(\frac{19}{x+1}.\frac{x}{6}=\frac{19x}{6.\left(x+1\right)}=\frac{19x}{6x+6}\)
Để A là số nguyên
=) \(19x⋮6x+6\)=) \(6.19x⋮6x+6\)=) \(114x⋮6x+6\)(1)
và \(6x+6⋮6x+6\)=) \(19.\left(6x+6\right)⋮6x+6\)=) \(114x+114⋮6x+6\)(2)
-Từ (1) và (2)
=) \(114x+114-114x⋮6x+6\)
=) \(114⋮6x+6\)=) \(6x+6\inƯ\left(114\right)\)
=) \(6x+6=\left\{1;2;3;6;19;38;57;114\right\}\)( Vì \(x\in N\))
=) \(6x=\left\{-5;-4;-3;0;13;32;51;108\right\}\)
=) \(x=\left\{0;18\right\}\)( Vì \(x\in N\)và \(0,108⋮6\))
Vậy \(x=\left\{0;18\right\}\)thì \(\frac{19}{x+1}.\frac{x}{6}\)là số nguyên
b) Để \(\frac{3n+1}{7}\)có giá trị nhỏ nhất
=) \(3n+1\)nhỏ nhất
=) \(3n\)nhỏ nhất =) \(n\)nhỏ nhất
Mà \(n\in N\)=) \(0\le n\)=) \(n=0\)( Vì \(n\)nhỏ nhất )
=) \(\frac{3n+1}{7}=\frac{3.0+1}{7}=\frac{1}{7}\)
=) \(\frac{3n+1}{7}\)có giá trị nhỏ nhất là \(\frac{1}{7}\)khi và chỉ khi \(n=0\)