Một xe tải và xe con cùng khởi hành từ A đến B, xe tải đi với vận tốc 40 km/h, xe con đi với vận tốc 60 km/ h. Sau khi mỗi xe đi được nửa quảng đường AB thì xe con nghỉ 40 phút rồi tiếp tục chạy đến B, xe tải đi trên quãng đường còn lại đã tăng vận tốc thêm 10 km/h nhưng vẫn đến B chậm hơn xe con nửa giờ. Hãy tính quãng đường AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi độ dài quãng đường AB là \(x\left(km\right),x>0\).
Thời gian xe tải đi từ A đến B là: \(\frac{x}{30}\left(h\right)\).
Thời gian xe con đi từ A đến B là: \(\frac{\frac{3}{4}x}{45}+\frac{\frac{1}{4}x}{50}=\frac{13x}{600}\left(h\right)\)
Đổi: \(2h20'=\frac{7}{3}h\).
Ta có phương trình: \(\frac{x}{30}-\frac{13x}{600}=\frac{7}{3}\)
\(\Leftrightarrow x=200\)(thỏa mãn)
Gọi độ dài quãng đường AB là \(x\left(km\right),x>0\).
Đổi: nửa giờ \(=\)\(0,5h\), \(40'=\frac{2}{3}h\).
Thời gian xe con đi từ A đến B là: \(\frac{x}{60}+\frac{2}{3}\left(h\right)\).
Thời gian xe tải đi từ A đến B là: \(\frac{\frac{x}{2}}{40}+\frac{\frac{x}{2}}{50}=\frac{9x}{400}\left(h\right)\).
Ta có: \(\frac{9x}{400}-\left(\frac{x}{60}+\frac{2}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow x=200\)(thỏa mãn)
Bài 1:
Đổi 50 phút thành $\frac{5}{6}$ giờ.
Thời gian xe tải đi từ A đến B: $t_1=\frac{AB}{v_{tải}}=\frac{AB}{40}$ (h)
Thời gian xe con đi từ A đến B: $t_2=2+\frac{AB-2.50}{50+10}=2+\frac{AB-100}{60}$ (h)
$t_1-t_2=\frac{AB}{40}-(2+\frac{AB-100}{60})$
$\Leftrightarrow \frac{5}{6}=\frac{AB}{40}-2-\frac{AB-100}{60}$
$\Rightarrow AB= 140$ (km)
Bài 2:
Đổi 5 giờ 30 phút thành $5,5$ giờ.
Thời gian đi từ A-B là: $\frac{AB}{30}$ (h)
Thời gian làm việc: $1$ (h)
Thời gian đi từ B-A là: $\frac{AB}{24}$ (h)
Tổng thời gian hao phí:
$\frac{AB}{30}+1+\frac{AB}{24}=5,5$
$\Rightarrow AB=60$ (km)
Gọi nửa quãng đường là x(km) (ĐK: x>0)
Thời gian xe con đi hết quãng đường và nghỉ là: \(\frac{x}{60}+\frac{x}{60}+\frac{2}{3}=\frac{x}{30}+\frac{2}{3}\left(h\right)\)
Thời gian xe tải đi nửa quãng đường đầu với vận tốc 40km/h là \(\frac{x}{40}\left(h\right)\)
Thời gian đi nửa quãng đường còn lại sau khi tăng thêm vận tốc 10km/h nữa là: \(\frac{x}{50}\)
Theo bài ra ta có PT: \(\frac{x}{30}+\frac{2}{3}=\frac{x}{40}+\frac{x}{50}-\frac{1}{2}\)
\(\Rightarrow x=100\left(km\right)\)
Vậy AB=2 x 100=200(km)
Một chiếc xe tải đi từ điểm A đến điểm B, quãng đường dài 184 km. Sau khi xe tải xuất phát được 1 giờ, một chiếc xe khách bắt đầu đi từ B về A và gặp xe tải sau khi đã đi được 1 giờ 40 phút. Tính vận tốc mỗi xe biết rằng mỗi giờ xe khách đi nhanh hơn xe tải 9 km.
Gọi quãng đường AB= s
thời gian xe con đi hết quãng đường AB t1= s/v1 +2/3 = s/60+2/3
thời gian xe tải đi hết quãng đường AB t2= s/(2v2) +s/2(v2+10) = s/80 +s/100
t2= t1+1/2 ---> s/80+ s/100 = s/60 +2/3 +1/2.
Giải phương trình trên ta được s= 200 km
Một tàu thủy chạy trên khúc sông dài 80km, cả đi cả về mất 8 giờ 20 phút. Tính vận tốc của tàu khi nước yên lặng, biết rằng vận tốc của dòng nước là 4 km/h.