Tìm max của \(\frac{1}{5x^2+7y^2}+\frac{1}{7x^2+5y^2}\)
biết x,y>0;x+y<=xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết: \(x+y\le xy\le\frac{\left(x+y\right)^2}{4}\)(theo BĐT AM-GM)
\(\Leftrightarrow\left(x+y\right)\left(x+y-4\right)\ge0\)mà x,y dương nên \(x+y\ge4\)
ta có:\(16P\le\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\)
Áp dụng BĐT cauchy-schwarz theo chiều ngược lại:
\(\frac{\left(x+y\right)^2}{5x^2+7y^2}\le\frac{x^2}{3\left(x^2+y^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)
\(\frac{\left(x+y\right)^2}{5y^2+7x^2}\le\frac{y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}\)
\(\Rightarrow\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\le\frac{x^2+y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)(*)
xét \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}=2-\frac{x^2+y^2}{y^2+2x^2}-\frac{x^2+y^2}{x^2+2y^2}=2-\left(x^2+y^2\right)\left(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\right)\)
Áp dụng BĐT cauchy:\(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\ge\frac{4}{3\left(x^2+y^2\right)}\)
do đó \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}\le2-\frac{4}{3}=\frac{2}{3}\)
kết hợp với (*):\(16VT\le\frac{1}{3}+\frac{1}{2}.\frac{2}{3}=\frac{2}{3}\)
\(VT\le\frac{1}{24}\)
Dấu = xảy ra khi x=y=2
1/ Ta có xy=-6
Với x=-6 => y=1
x=-3 => y=2
x= -2 => y=3
x=-1 => y=6
2/ Ta có x=y+4
Thay x=y+4 vào bt, ta được
<=> y+4-3/y-2 =3/2
<=> y+1/y-2=3/2
<=> 2(y+1)=3(y-2)
<=> 2y +2 = 3y - 6
<=> 3y - 2y= 2+ 6
<=> y= 8 <=> x= 12
3/ -4/8 = x/-10 <=> x= (-4)*(-10)/8=5
-4/8 = -7/y <=> y=(-7)*8/(-4) =14
-4/8 = z/-24 <=> z= (-4)*(-24)/8=12
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{\left(1+5y\right)-\left(1+7y\right)}{5x-4x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-2y}{x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{-10y}{5x}\)
\(\Rightarrow\frac{1+5y}{5x}=-\frac{10y}{5x}\)
\(\Rightarrow1+5y=-10y\)
\(\Rightarrow-15y=1\)
\(\Rightarrow y=\frac{1}{-15}\)
Ta có:
\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)
\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)
=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)
\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)
=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)
\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)
\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)
\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)
\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)
\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)
=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)
Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)