Rút gọn các biểu thức sau
1. (x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3
2. (x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức đã cho là A.
Ta có: 2A = (3 - 1) * (3 + 1) * (3^2 + 1) * .... * (3^64 + 1)
= (3^2 - 1) * (3^2 + 1) * ... * (3^64 + 1) (hằng đẳng thức a^2 - b^ 2 = (a+b)(a-b))
Rút gọn triệt tiêu ta được 2A=3^64 - 1
=> A = (3^64 - 1)/2
\(\left(2x-1\right)^3-8\left(x-3\right)\left(x+3\right)+12x\left(x-2\right)\)
\(=8x^3-12x^2+6x-1-8\left(x^2-9\right)+12x^2-24x\)
\(=8x^3-18x-1-8x^2+72=8x^3-8x^2-18x+71\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
1.
$2(-2x+1)\leq -x+3$
$\Leftrightarrow -4x+2\leq -x+3$
$\Leftrightarrow -1\leq 3x$
$\Leftrightarrow x\geq \frac{-1}{3}$
2.
$2(x+1)\leq -x+3$
$\Leftrightarrow 2x+2\leq -x+3$
$\Leftrightarrow 3x\leq 1$
$\Leftrightarrow x\leq \frac{1}{3}$
3.
$5-3(x-1)>2$
$\Leftrightarrow 5-(3x-3)>2$
$\Leftrightarrow 8-3x>2$
$\Leftrightarrow 8-3x-2>0$
$\Leftrightarrow 6-3x>0$
$\Leftrightarrow 6>3x$
$\Leftrightarrow x< 2$
4.
$x^2-12x+3-(x-3)^2>0$
$\Leftrightarrow x^2-12x+3-(x^2-6x+9)>0$
$\Leftrightarrow -6x-6>0$
$\Leftrightarrow -6>6x$
$\Leftrightarrow x< -1$
à bài này dễ mà
đầu tiên nhá:không biết,tiếp theo:ko biết.Thế thôi còn lại bạn tự giải
bạn sử dụng hằng đẳng thức nhé .Mình bít nhg lười viết nắm
1) \(\left(x+1\right)^3-\left(x-4\right)\left(x+4\right)-x^3\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^2-16\right)-x^3\)
\(=x^3+3x^2+3x+1-x^2+16-x^3\)
\(=2x^2+3x+17\)
2) \(\left(x+2\right)^3-x\left(x+3\right)\left(x-3\right)-12x^2-8\)
\(=\left(x^3+6x^2+12x+8\right)-x\left(x^2-9\right)-12x^2-8\)
\(=x^3+6x^2+12x+8-x^3+9x-12x^2-8\)
\(=-6x^2+21x\)
`@` `\text {Ans}`
`\downarrow`
`1.`
\((x + 1) ^ 3 - (x - 4)(x + 4) - x ^ 3\)
`= x^3 + 3x^2 + 3x + 1 - [ x(x+4) - 4(x+4)] - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 + 4x - 4x - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - (x^2 - 16) - x^3`
`= x^3 + 3x^2 + 3x + 1 - x^2 + 16 - x^3`
`= (x^3 - x^3) + (3x^2 - x^2) + 3x + (1+16)`
`= 2x^2 + 3x + 17`
`2.`
\((x + 2) ^ 3 - x(x + 3)(x - 3) - 12x ^ 2 - 8\)
`= x^3 + 6x^2 + 12x + 8 - [ (x^2 + 3x)(x-3)] - 12x^2 - 8`
`= x^3 + 6x^2 + 12x + 8 - (x^3 - 9x) - 12x^2 - 8`
`= x^3 + 6x^2 + 12x +8 - x^3 + 9x - 12x^2 - 8`
`= (x^3 - x^3) + (6x^2 - 12x^2) + (12x + 9x) + (8-8)`
`= -6x^2 + 21x `