GIẢI PT:
(1/x^2-5x+6)+(!/x^2-7x+12)+(1/x^2-9x+20)+(1/x^2-11x+30)=1/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne-2;-3;-4;-5;-6\)
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\Leftrightarrow\left(x+2\right)\left(x+6\right)=32\)
\(\Leftrightarrow x^2+8x-20=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(...\Leftrightarrow\frac{1}{\left(x+2\right) \left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{18}\Leftrightarrow\frac{x+6}{\left(x+2\right)\left(x+6\right)}-\frac{x+2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\Rightarrow\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\left(x+2\right)\left(x+6\right)=72\)
=> \(x^2+8x-60=0\)
Phân tich đa thức thành nhân tử để tìm x
\(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{x+2}-\frac{1}{\left(x+6\right)}\)
\(\frac{1}{t}-\frac{1}{t+4}=\frac{4}{t\left(t+4\right)}=\frac{1}{8}=\frac{4}{32}\Rightarrow t=4\Rightarrow x=2\)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x-6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=\left(x-2\right)\left(x-6\right)\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
bạn xem lại nhé
cái này là pt có chứa ẩn ở mẫu nên phải có điều kiện, đối chiếu điều kiện và từ dòng có pt chứa ẩn ở mẫu sang dòng có pt đưa dc về dạng ax+b=0 thì dùng dấu ''=>'' nhé
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/(x+5).(x+6) = 1/8
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 - 1/x+6 = 1/8
<=> 1/x+2 - 1/x+6 = 1/8
<=> (x+6-x-2)/(x+2).(x+6) = 1/8
<=> 4/(x+2).(x+6) = 1/8
<=>(x+2).(x+6) = 4 : 1/8 = 32
<=>x^2 + 8x + 12 = 32
<=> x^2+8x+12-32=0
<=>x^2+8x-20=0
<=>(x-2).(x+10)=0
<=> x-2 =0 hoặc x+10 = 0
<=> x=2 hoặc x=-10
giang sinh an lanh $%###Xuyen gam cu chuoi###%$
phân tích mẫu thành nhân tử r` tách ra rút gọn như kiểu bài tính của lớp 5 ấy
bài tương tự : Câu hỏi của Lê Phương Oanh - Toán lớp 8 | Học trực tuyến (https://h-o-c-24.vn/hoi-dap/question/179719.html)
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+\frac{1}{\left(x+3\right)}-...-\frac{1}{x+6}+\frac{1}{\left(x+6\right)}-\frac{1}{\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)\(\Leftrightarrow x^2+8x+7=12\Leftrightarrow\left(x+4\right)^2-21=0\Leftrightarrow\left(x+4-\sqrt{21}\right)\left(x+4+\sqrt{21}\right)=0\Rightarrow\left[{}\begin{matrix}x=-4+\sqrt{21}\\x=-4-\sqrt{21}\end{matrix}\right.\)
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
ĐKXĐ: x khác 2;3;4;5;6
\(\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2-11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x-6}-\dfrac{1}{x-2}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x+6-x+2}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x-2\right)\left(x-6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow32=x^2-8x+12\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=10\end{matrix}\right.\)
Đk:\(x\ne2;x\ne3;x\ne4;x\ne5;x\ne6\)
\(pt\Leftrightarrow\frac{1}{\left(x-6\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}+...+\frac{1}{\left(x-3\right)\left(x-2\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-4}+...+\frac{1}{x-3}-\frac{1}{x-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\)\(\Leftrightarrow\frac{x-2}{\left(x-6\right)\left(x-2\right)}-\frac{x-6}{\left(x-2\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\Leftrightarrow\left(x-2\right)\left(x-6\right)=32\)
\(\Leftrightarrow x^2-8x+12=32\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
! là gì vậy bn sao ghi vào?