K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

`2,`

`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`

`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`

`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`

`= 0 + 0 + 5`

`= 5`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

1 tháng 7 2023

Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5

=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )

`@` `\text {Ans}`

`\downarrow`

`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`

`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`

`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`

`= 0 + 0 + 0 + 0`

`= 0`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`@` `\text {Kaizuu lv uuu}`

20 tháng 11 2021

\(a,x^2y-8x+xy-8=xy\left(x+1\right)-8\left(x+1\right)=\left(xy-8\right)\left(x+1\right)\\ b,=\left(x+3y\right)^2-9=\left(x+3y-3\right)\left(x+3y+3\right)\)

\(A=3x^2\left(2x^2-7x-2\right)-6x^2\left(x^2-4x-1\right)-3x^3+15\\ A=6x^4-21x^3-6x^2-6x^4+24x^3+6x^2-3x^3+15\\ A=15\left(đpcm\right)\)

\(Sửa:\left(6x^3-7x^2+2x\right):\left(2x+1\right)\\ =\left(6x^3+3x^2-10x^2-5x\right):\left(2x+1\right)\\ =\left[3x^2\left(2x+1\right)-5x\left(2x+1\right)\right]:\left(2x+1\right)\\ =3x^2-5x\)

20 tháng 11 2021

cảm ơn !

2 tháng 7 2023

\(-22x^3-\left(-21x^3+19x^2+23^0\right)-\left(-x^3-18x^2\right)+\left(x^2-23^1\right)\)

\(=-22x^3+21x^3-19x^2-1+x^3+18x^2+x^2-23\)

\(=\left(-22x^3+21x^3+x^3\right)+\left(-19x^2+18x^2+x^2\right)+\left(-1-23\right)\)

\(=0x^3+0x^2-24\)

\(=-24\)

Vậy biểu thức trên có giá trị không phụ thuộc vào biến.

15 tháng 7 2021

A = ( 3x )3 + 23 - 27x3 + 6 = 27x3 + 8 - 27x3 + 6 = 14 ( đpcm )

B = x3 + 3x2 + 3x + 1 - ( x3 - 1 ) - 3x2 - 3x = x3 + 1 - x3 + 1 = 2 ( đpcm )

C = 6( x + 2 )( x2 - 2x )( x2 - 2x + 4 ) - 6x3 - 2 ( bạn xem lại đề bài nhé ._. )

D = 2[ ( 3x )3 + 13 ] - 54x3 = 2( 27x3 + 1 ) - 54x3 = 54x3 + 2 - 54x3 = 2 ( đpcm )

15 tháng 7 2021

A = 6( x3 + 23 ) - 6x3 - 2 = 6x3 + 48 - 6x3 - 2 = 46 ( đpcm )

15 tháng 7 2021

\(6\left(x+2\right)\left(x^2-2x+4\right)-6x^3-2\)

\(=6\left(x^3+8\right)-6x^3-2\)

\(=6x^3+48-6x^3-2\)

\(=46\)

Vậy ...

21 tháng 9 2020

P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )

= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x

= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )

= 0 

Vậy giá trị của P không phụ thuộc vào biến

Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )

= x3 - 3x2 + 3x - 1 - ( x+ 3x2 + 3x + 1 ) + 6( x2 - 1 )

= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )

= -8

Vậy giá trị của Q không phụ thuộc vào biến

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )