K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

 cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm 
 

24 tháng 5 2017

tam giac ABC cân tại  A có góc BCA =20 độ nên ABC =ACB= 80 ĐỘ

TRÊN CẠNH AC lấy D sao cho ABD=60 độ, khi đó DBC =20 độ nên BDC =80 ĐỘ 

31 tháng 7 2016

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

Cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
Thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm 

6 tháng 2 2020

khó hiểu quá

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

Không biết số liệu góc của $BAC$ đã đúng chưa nhưng mình có thể chỉ hướng giải này cho em.

Kẻ $BH$ vuông góc với $AC$

Khi đó ta có:

\(BH=a\sin A\)

\(AH=a\cos A\)\(\Rightarrow CH=AC-AH=a-a\cos A\)

Áp dụng định lý Pitago cho tam giác vuông $BHC$ ta có:
\(BC^2=BH^2+CH^2\)

\(\Rightarrow b^2=(a\sin A)^2+(a-a\cos A)^2\)

\(b^2=a^2\sin ^2A+a^2+a^2\cos ^2A-2a^2\cos A\)

\(b^2=a^2(\sin ^2A+\cos ^2A)+a^2-2a^2\cos A\)

\(b^2=a^2+a^2-2a^2\cos A=2a^2-2a^2\cos A=2a^2(1-\cos A)\) (nhớ rằng tổng bình phương của sin và cos một góc bất kỳ thì bằng 1)

\(\Rightarrow b=a\sqrt{2(1-\cos A)}\)

Thay vào :

\(a^3+b^3=a^3(1+\sqrt{8(1-\cos A)^3})\)

\(3ab^2=6a^3(1-\cos A)\)

Nếu $A=20^0$ như bài đã cho thì ta thấy \(a^3+b^3\neq 3ab^2\) .

4 tháng 8 2018

Akai Haruma thầy giúp em với