K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

B=1*2*3+2*3*4+3*4*5+...+(n-1)n(n+1)

4B=1*2*3*4+2*3*4*(5-1)+3*4*5*(6-2)+...+(n-1)*n*(n+1)*[(n+2)-(n-2)]

4B=1*2*3*4+2*3*4*5-1*2*3*4+3*4*5*6-2*3*4*5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)

4B=(n-1)n(n+1)(n+2)

B=[(n-1)n(n+1)(n+2)]:4

Nho k cho minh voi nha

24 tháng 5 2017

xin loi ban toaan lop 6 ban a

11 tháng 4 2020

B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + .... + (n - 1).n.(n + 1).[(n + 2) - (n - 2)]

4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

4B = (n-1)n(n+1)(n+2)

B = (n-1)n(n+1)(n+2) : 4

12 tháng 4 2020

Ta có : 4B =4 . ( 1.2.3 + 2.3.4 + ...+ (n - 1 )n( n + 1 )

<=> 4B = 1.2.3 .( 4 - 0 ) + 2.3.4 .( 5- 1 ) + ... + ( n - 1 ) n ( n + 1 ) [ ( n + 2 ) - ( n - 2 ) ]

<=> 4B = 1 . 2 . 3 . 4 +2 . 3. 4 .5 -1.2.3 .4 + ... + ( n- 1 ) n ( n + 1 ) ( n + 2 )- ( n-1)( n+1).n/( n- 2 )

<=> 4B = ( n-  1 ).( n+1 ).n.( n + 2 )

<=> B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)

Vậy B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)

14 tháng 9 2018

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)

\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)

Tham khảo nhé~

14 tháng 9 2018

Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

15 tháng 8 2016

3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>F 

15 tháng 8 2016

H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

 

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

8 tháng 1 2016

A=\(x = {n(n+1)(n+2){} \over 3}\)

 

8 tháng 1 2016

S=1.2+2.3+3.4+.............+n(n+1)

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)

Ta có các công thức:

1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6

1 + 2 + 3 + ...+ n = n(n+1)/2

Thay vào ta có:

S = n(n+1)(2n+1)/6 + n(n+1)/2

=n(n+1)/2[(2n+1)/3 + 1]

=n(n+1)(n+2)/3

21 tháng 11 2017

Đặt

\(A=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+.......+n\left(n+1\right)\left(n+2\right)\)\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+.......+n\left(n+1\right)\left(n+2\right)\cdot4\)\(4A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+........+n\left(n+1\right)\left(n+2\right)\left(n+3-n-1\right)\)\(4A=1\cdot2\cdot3\cdot4-0+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Vậy \(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

1 tháng 4 2018

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

1 tháng 4 2018

546

nha bn

k mk nha

1 tháng 4 2018

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)