K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

Ta có:

\(8^{102}-2^{102}\) = \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)

Vì \(8^4\)và \(2^4\)có hàng đv là 6 nên \(\left(8^4\right)^{51}\)và \(\left(2^4\right)^{51}\)cũng có hàng đv là 6.

=> \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)có hàng đv là 0.

=> \(8^{102}-2^{102}\)chia hết cho  10

5 tháng 7 2015

Bạn xem lại đề, phải là chia hết cho 19. Có thể tìm thấy 1 ví dụ trái với đề bài.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

\((0,125)^{100}.8^{102}=(\frac{1}{8})^{100}.8^{102}=\frac{8^{102}}{8^{100}}=8^{102-100}=8^2=64\)

2 tháng 8 2015

a) S = 2 + 22 + 23 + ... + 2100

ta có: (2+22) + (23+24)+...+(299+2100)

          chc 3  + chc 3 +....+  chc 3

=> S chia hết cho 3

b) S = 2 + 22 + 23 + ... + 2100

ta có: (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

                chc 15          +.......+    chc 15

=> S chia hết cho 15

chc nghĩa là chia hết cho nhak

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)

4 tháng 7 2015

\(\text{a) }a+b\text{ chia hết cho 3}\)

\(\Rightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\) chia hết cho 3

18 tháng 8 2016

CMR 11100 -1 chia hết cho 1000