K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`

Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`

Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`

18 tháng 7 2017

Áp dụng BĐT Cauchy có:

 S= \(\frac{1}{x}\)\(\frac{4}{y}\)+\(\frac{9}{z}\)\(\frac{1^2}{x}\)\(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)\(\frac{6^2}{1}\)=36

Vậy Min S=36

cái đó là bđt schwarts Đ à

13 tháng 7 2020

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize:

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

18 tháng 1 2023

Q=3x+9y+15z+x+x4​+y+y9​+z+z25​

\ge 108+2.2+2.3+2.5=128≥108+2.2+2.3+2.5=128

Dấu "=" xảy ra khi x+3y+5z=36, x=\dfrac{4}x, y=\dfrac{9}y, z=\dfrac{25}z\Rightarrow x=2,y=3,z=5x+3y+5z=36,x=x4​,y=y9​,z=z25​⇒x=2,y=3,z=5

bạn tham khảo nhé

DD
12 tháng 8 2021

\(P=x+y+z+\frac{3}{4x}+\frac{9}{8y}+\frac{1}{z}\)

\(=\frac{3}{4}x+\frac{3}{4x}+\frac{1}{2}y+\frac{9}{8y}+\frac{1}{4}z+\frac{1}{z}+\frac{1}{4}x+\frac{1}{2}y+\frac{3}{4}z\)

\(\ge\frac{3}{2}\sqrt{x.\frac{1}{x}}+2\sqrt{\frac{1}{2}y.\frac{9}{8y}}+2\sqrt{\frac{1}{4}z.\frac{1}{z}}+\frac{1}{4}.10\)

\(=\frac{3}{2}+\frac{3}{2}+1+\frac{5}{2}=6,5\)

Dấu \(=\)khi \(\hept{\begin{cases}x=1\\y=1,5\\z=2\end{cases}}\).

20 tháng 7 2019

Áp dụng: (a + b)² ≥ 4ab Ta có: 
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*)        (Vì x + y + z = 1) 
=> (x + y)/xyz ≥ 4(x + y)²z/xyz      ( Nhân hai vế (*) với (x + y)/xyz) 
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16    (vì (x + y)² ≥ 4xy) 
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1 
=> x = y = 1/4; z = 1/2

20 tháng 7 2019

bn Phùng Gia Bảo nhầm 1 chỗ r nhe

C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)

C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)