Cho: A= \(\frac{37}{51}+\frac{42}{47}+\frac{29}{37}\) B= \(\frac{31}{35}+\frac{49}{63}+\frac{42}{45}\)
Không tính giá trị cụ thể của A và B, hãy so sánh A và B.
( LƯU Ý: TRÌNH BÀY CÁCH TÍNH RÕ RÀNG )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1 / 3 + 3 / 31 + 3 / 47 < 1 / 3 + 3 / 30 + 3 / 45 =
1 / 3 + 1 / 10 + 1 / 15 = 1 / 3 + (1 / 30) * (3 + 2) = 1 / 3 + (1 / 30) * 5 = 1 / 3 + 1 / 6 =
(1 / 6) x (2 + 1) = (1 / 6) x 3 = 1/2
\(\frac{22}{45}\)< \(\frac{51}{101}\)
\(\frac{23}{48}\)< \(\frac{47}{92}\)
\(\frac{34}{43}\)< \(\frac{35}{42}\)
\(1-\frac{23}{27}=\frac{4}{27}=\frac{8}{54}\)
\(1-\frac{21}{29}=\frac{8}{29}\)
Ta thấy :
\(\frac{8}{54}< \frac{8}{29}\)
\(=>A>B\)
Ta tìm phần bù
\(1-\frac{23}{27}=\frac{4}{27}\)\(1-\frac{21}{29}=\frac{8}{29}\)
\(\frac{4}{27}=\frac{8}{54};\frac{8}{54}< \frac{8}{29}\)
Ta đảo dấu
\(\Rightarrow A>B\)
mình nghĩ là đề như vậy:
\(\frac{24}{8.16}-\frac{40}{16.24}+\frac{56}{24.32}-\frac{72}{32.40}=\frac{8+16}{8.16}-\frac{16+24}{16.24}+\frac{24+32}{24.32}-\frac{32+40}{32.40}\)
\(=\frac{8}{8.16}+\frac{16}{8.16}-\frac{16}{16.24}-\frac{24}{16.24}+\frac{24}{24.32}+\frac{32}{24.32}-\frac{32}{32.40}-\frac{40}{32.40}\)
\(=\frac{1}{16}+\frac{1}{8}-\frac{1}{24}-\frac{1}{16}+\frac{1}{32}+\frac{1}{24}-\frac{1}{40}-\frac{1}{32}\)
\(=\frac{1}{8}-\frac{1}{40}=\frac{1}{10}\)
\(a.\)
\(625^{17}=\left(5^4\right)^{17}=5^{68}\)
\(125^{19}=\left(5^3\right)^{19}=5^{57}\)
Vì \(5^{68}>5^{57}\Rightarrow625^{17}>125^{19}\)
xét A và B có :
\(\frac{42}{47}\)<\(\frac{42}{45}\) (1)
theo tính chất bắc cầu ta có ;
\(\frac{37}{51}\)+\(\frac{14}{51}\)=1 ; \(\frac{29}{37}\)+\(\frac{8}{37}\)=1
\(\frac{31}{35}\)+\(\frac{4}{35}\)=1 ; \(\frac{49}{63}\)+\(\frac{14}{63}\)=1
Mà \(\frac{14}{51}\)>\(\frac{14}{63}\)=> \(\frac{37}{51}\)< \(\frac{49}{63}\)(2)
ta lại có : \(\frac{4}{35}\)=\(\frac{8}{70}\)( nhân cả tử và mẫu vs 2 )
mà \(\frac{8}{70}\)<\(\frac{8}{37}\)nên \(\frac{4}{35}\)<\(\frac{8}{37}\)=>\(\frac{29}{37}< \frac{31}{35}\)(3)
Từ (1) ; (2);(3)=>\(\frac{42}{47}+\frac{37}{51}+\frac{29}{37}< \frac{42}{45}+\frac{49}{63}+\frac{31}{35}\)