Rút gọn các biểu thức sau:
a) √ 3 +√ 8-2√ 15
b) √ x-1-2√x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = $\frac{2 + \sqrt{2}}{1 + \sqrt{2}}$
Để rút gọn biểu thức này, ta nhân tử và chia tử cho $1 - \sqrt{2}$:
A = $\frac{(2 + \sqrt{2})(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$
A = $\frac{-2\sqrt{2}}{-1}$
A = $2\sqrt{2}$
C = $\frac{2\sqrt{3} - \sqrt{6}}{\sqrt{8} - 2}$
Ta nhân tử và chia tử cho $\sqrt{2}$:
C = $\frac{(2\sqrt{3} - \sqrt{6})\sqrt{2}}{(\sqrt{8} - 2)\sqrt{2}}$
C = $\frac{4\sqrt{6} - 2\sqrt{3}}{2\sqrt{2}}$
C = $\frac{2\sqrt{6} - \sqrt{3}}{\sqrt{2}}$
Ta nhân tử và chia tử cho $\sqrt{6} + \sqrt{2}$:
C = $\frac{(2\sqrt{6} - \sqrt{3})(\sqrt{6} + \sqrt{2})}{(\sqrt{2})(\sqrt{6} + \sqrt{2})}$
C = $\frac{12 - 3\sqrt{2}}{2}$
C = $6 - \frac{3\sqrt{2}}{2}$
E = $\frac{x\sqrt{x+1}}{\sqrt{x+1}}$
E = $x\sqrt{\frac{x+1}{x+1}}$
E = $x$.
A = (2 + √2)/(1 + √2)
= √2(√2 + 1)/(1 + √2)
= √2
C = (2√3 - √6)/(√8 - 2)
= √6(√2 - 1)/[2(√2 - 1)]
= √6/2
E = (x√x + 1)/(√x + 1)
= (√x + 1)(x - √x + 1)/(√x + 1)
= x - √x + 1
`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`
`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`
`=5x^2-5x^2-4x+6x+1+9+245`
`=2x+255`
`b)(x-2)(x^2+2x+4)-(25+x^3)`
`=x^3-8-x^3-25=-33`
Lời giải:
a.
$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$
$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$
$=5x^2+2x+10-(5x^2-245)=2x+255$
b.
$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$
$=-8-25=-33$
\(a,=\left(x+8-x+2\right)^2=10^2=100\\ b,=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ c,=x^3+1-x^3+1=2\)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)
cíuuu
a: =căn 3+căn 5-căn 3=căn5
b: \(=\sqrt{x-2-2\sqrt{x-2}+1}=\sqrt{\left(\sqrt{x-2}-1\right)^2}\)
\(=\left|\sqrt{x-2}-1\right|\)