K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

\(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}\)

=\(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)

=\(\frac{1}{2}\left(1-\frac{1}{2015}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2016}\right)\)

=\(\frac{3}{4}-\left(\frac{1}{4030}+\frac{1}{4032}\right)\) < \(\frac{3}{4}\)

=> đpcm

21 tháng 5 2017

Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)

  \(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)

 \(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)

\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)

 \(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)

   \(\Leftrightarrow A=1,5\)

          Đổi \(\frac{3}{4}=0,75\)

                Vì 0,75 < 1,5

Nên ko thể CM  

21 tháng 5 2017

Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.

19 tháng 4 2018

\(\left(1+\frac{1}{1.3}\right).....\left(1+\frac{1}{2013.2015}\right)=\frac{2^2}{1.3}.....\frac{2014^2}{2013.2015}=\)\(\frac{2.3.....2014}{1.2.....2013}.\frac{2.3.....2014}{3.4.....2015}=2014.\frac{2}{2015}=\frac{4028}{2015}\)

11 tháng 5 2018

dấu này là mũ hay là gì ? ^^^^^

22 tháng 5 2017

Yêu cầu các CTV, các bạn làm sai giúp nhé! Nếu bạn muốn đáp án tham khảo thì sau đề vòng 1 mk sẽ giải nhé

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)

26 tháng 3 2019

Nhầm ,chỉ có một + 1/3.5 thôi các bạn nhé