Rút gọn biểu thức:
A = \(\frac{\sqrt{\sqrt{10}-3}-\sqrt{2}-\sqrt{\sqrt{10}+3}}{\sqrt{2}}+\sqrt{\sqrt{10}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
Bài 1:
a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)
\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)
\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)
\(=\dfrac{5}{2}\sqrt{5}\)
c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)
\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Bài 2:
e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)
Ta có: \(\sqrt{6-x}=3x-4\)
\(\Leftrightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow9x^2-24x+16+6-x=0\)
\(\Leftrightarrow9x^2-25x+22=0\)
\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)
Vậy: Phương trình vô nghiệm
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
ta có: \(2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}=2.\sqrt{2}.\sqrt{5}+\sqrt{2}.\sqrt{5}.\sqrt{3}-2.\sqrt{2}-\sqrt{2}.\sqrt{3}\)
=>\(\sqrt{2}.\sqrt{5}.\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right).\sqrt{2}.\left(\sqrt{5}-1\right)\)
lại có \(2.\sqrt{10}-2\sqrt{2}=2.\sqrt{2}.\left(\sqrt{5}-1\right)\)
thay vào H ta có : H= \(\frac{2+\sqrt{3}}{2}:\frac{2}{\sqrt{3}-1}=\frac{1+\sqrt{2}}{4}\)