K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Theo công thức Heron ta có :

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\)    (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))

=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)

=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)

<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)

+) cách chứng minh định lý Heron

Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có

\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)

ta có diện tích tam giác ABC

\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)

\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)

\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)

\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

2 tháng 9 2020

1 bài BĐT rất hay !!!!!!

BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333

\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)

TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)

=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)

=>    \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)

TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU:   \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)

ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau: 

=>   \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)

=>   \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)

=>   \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

=>   \(S\ge\frac{1}{\sqrt{3}}\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>   \(a=b=c=\sqrt{\frac{1}{27}}\)

6 tháng 9 2020

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

7 tháng 9 2020

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

23 tháng 5 2019

Ta có :

a2b ( a - b ) + b2c ( b - c ) + c2a ( c - a )

= ( a3b + b3c + c3a ) - ( a2b2 + b2c2 + c2a2 )

\(abc\left(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\right)-\left(abc\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\ge abc.\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}=abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\)

Mà \(\left(a+b+c\right)^3\ge27abc\)

\(abc\left(a+b+c\right)-\left(abc\right)^2.\frac{9}{a^2+b^2+c^2}\ge abc\left[\left(a+b+c\right)-\frac{\left(a+b+c\right)^3}{3\left(a^2+b^2+c^2\right)}\right]\)

\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}\left[3\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^3\right]\)

\(=\frac{abc}{3\left(a^2+b^2+c^2\right)}2\left(a^3+b^3+c^3-3abc\right)\)

vì a3 + b3 + c3 - 3abc \(\ge\)0 nên a2b(a - b ) + b2c ( b - c ) + c2a ( c - a ) \(\ge\)0

1 tháng 1 2017

Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi. 

Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp 

Ta có 

ha=2S/a =r(a+b+c)/a 

=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)} 

=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) = 

=1/r^2/(1/a^2+1/b^2+1/c^2) 

Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*) 

=> T<=1/4 

=> Max(T) = 1/4 Khi tam giác đều 

c/m bất đẳng thức (*) 

S = pr 

S= √p(p-a)(p-b)(p-c) 

=> pr= √p(p-a)(p-b)(p-c) 

=> (pr^2) = (p-a)(p-b)(p-c) 

=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c) 

=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2 

=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2 

=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4

=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều