Giải phương trình: 7x2 - 12 x -64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện : x ≠ 1
Ta có:
⇔ x 3 +7 x 2 +6x -30 = ( x 2 –x +16)(x -1)
⇔ x 3 +7 x 2 +6x -30 = x 3 – x 2 – x 2 +x +16x -16
⇔ 9 x 2 -11x -14 =0
∆ = - 11 2 -4.9.(-14) = 121 +504 = 625 > 0
∆ ' = 625 =25
Giá trị của x thỏa mãn điều kiện bài toán
Vậy nghiệm của phương trình là x = -7/9 và x = 2
⇔ -7 x 2 + 4 = 5x + 5 – x 2 + x – 1
⇔ -7 x 2 + x 2 – 5x – x = 5 – 1 – 4
⇔ -6 x 2 – 6x = 0
⇔ - x 2 – x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
⇔ x = 0 hoặc x = -1 (loại)
Vậy phương trình có nghiệm x = 0.
2x4 – 7x2 + 5 = 0 (1)
Tập xác định: D = R.
Đặt t = x2, điều kiện t ≥ 0.
Khi đó phương trình (1) trở thành:
2t2 – 7t + 5 = 0
⇔ (2t – 5) (t – 1) = 0
Viết phương trình về dạng
\(\frac{2^x}{3^x+4^x}-\frac{4^x}{9^x+16^x}=\frac{-5}{2x}\) hay \(\frac{2^x}{3^x+4^x}+\frac{5}{x}=\frac{2^{2x}}{3^{2x}+4^{2x}}+\frac{5}{2x}\)
Xét hàm số \(f\left(t\right)=\frac{2^t}{3^t+4^t}+\frac{5}{t}\) luôn đồng biến
Đáp số : Phương trình vô nghiệm
Phương trình bậc hai: 7x2 – 2x + 3 = 0
Có: a = 7; b = -2; c = 3; Δ = b2 – 4ac = (-2)2 – 4.7.3 = -80 < 0
Vậy phương trình vô nghiệm.
Cái bạn viết chưa phải 1 phương trình nhé. Bạn xem lại.