Tìm số có 2 chứ số , biết rằng số đó gắp 9 lần tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab. Theo đề ta có:
(a+b)3 = ab
3a + 3b = 10a + b
3b - b = 10a - 3a
2b = 7a < or = 18
Để a là số tự nhiên thì 2b chia hết cho 7
=> b = 7
Với b=7 ta có a = 2.7 : 7 = 2
ta có ab bằng 27
thử lại: (2+7)3 = 27 (đúng)
Vậy số cần tìm là 27
Đầu tiên gọi số đó là ab. Theo đề thì ab = ( a + b ) * x ( x là số lần trong đề )
Ta có :
a * 10 + b = a * x + b * x
a * 10 - a * x = b * x - b
a * ( 10 - x ) = b * ( x - 1 ) (*)
Ta sẽ sử dụng công thức (*) để giải các bài trên.
Giải :
a) Gọi số đó là ab
Theo đề thì ab = ( a + b ) * 6
Ta có :
a * 10 + b = a * 6 + b * 6
a * 10 - a * 6 = b * 6 - b
a * ( 10 - 6 ) = b * ( 6 - 1 )
a * 4 = b * 5
Vậy a phải chia hết cho 5. Vì a khác 0 và là số có 1 chữ số nên a = 5.
Thay a = 5 ta có b = 4.
Vậy số đó là 54.
b) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 8
Ta có :
a * 10 + b = a * 8 + b * 8
a * 10 - a * 8 = b * 8 - b
a * ( 10 - 8 ) = b * ( 8 - 1 )
a * 2 = b * 7
Vậy a chỉ có thể chia hết cho 7. Vì a khác 0 và là số có 1 chữ số nên a = 7.
Thay a = 7 vào biểu thức, ta có b = 2.
Vậy số đó là 72.
c) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 9
Ta có :
a * 10 + b = a * 9 + b * 9
a * 10 - a * 9 = b * 9 - b
a * ( 10 - 9 ) = b * ( 9 - 1 )
a = b * 8
Vậy a chia hết cho 8. Vì a khác 0 và là số có 1 chữ số nên a = 8.
Thay a = 8 vào biểu thức được b = 1.
Vậy số đó là 81.
Đ/s : a) 54; b) 72; c ) 81.
Nhận xét : với mọi x thỏa 1 < x < 10 thì số cần tìm luôn là số chia hết cho 9.
c)Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi số đó là ab
Theo bài cho : ab = 5.( a + b ) => 10a + b = 5a + 5b => 10a - 5a = 5b - b = 5a = 4b
Chỉ có a = 4 ; b = 5 t/m
Vậy số đó là 45
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
Gọi số cần tìm là \(\overline{ab}\).
Ta có:
\(\overline{ab}=9\times\left(a+b\right)\)
\(\Leftrightarrow10\times a+b=9\times a+9\times b\)
\(\Leftrightarrow a=8\times b\)
suy ra \(b=1,a=8\)
Số cần tìm là: \(81\).
số đó là 81 nhe bạn
Còn đây là lời giải:
Gọi số đó là ab ( a,b thuộc { 0 ,1 , ................. 99 } )
Có ab gấp 9 lần tổng hai số đó
Tức là : ab = 9x(a+b)
<=> 10a = b = 9a+ 9b
<=> a= 8b
Xét b = 1 => a= 8 ( tm~) ==> số cần tìm là 81
Xét b = 2=> a = 16 = Loại vì a thuộc { 1 ,2 ,......, 9 }
Vậy số cần tìm là 81
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi SPT là : \(\overline{ab}\)
Ta có : \(\overline{ab}=9\times\left(a+b\right)\\ \overline{a0}+b=9\times a+9\times b\\ a\times10+b=9\times a+9\times b\\ a\times10-9\times a=9\times b-b\\ a=8\times b\)
Do `a,b` đều là các số có `1` chữ số nên dễ dàng tính được `a=8,b=1`
Ta có :
\(\left(a+b\right)\times9=\overline{ab}\\ a\times9+b\times9=a\times10+b\\ b\times9-b=a\times10-a\times9\\ b\times8=a\times1\)
a=8 và b =1
Vậy số cần tìm là 81