cho tam giác abc cân tại a (ab=ac). trên cạnh bc lấy điểm d, e sao cho bd=de=ec. chứng minh rằng bad<dae. Giúp mik vs mik đang cần gấp ạ. Mik sẽ tim cho ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔADB và ΔAEC có
AB=AC
góc B=góc C
BD=CE
=>ΔADB=ΔAEC
=>góc BAD=góc CAE
a) xét 2 tam giác vuông ABM VÀ ACM, có:
AB=AC ( ABC CÂN)
góc b = góc c (___nt____)
BM=CM ( BD=EC; DM=ME)
=> TAM GIÁC ABM = T/GIÁC ACM
=>góc amb = góc amc (2 góc tuog ứng)
mà amb và amc là 2 góc kề bù
=> amb = amc = 90 độ hay am vuông góc với bc
b) ta có ab = ac vì t/giác abc cân tại a
xét t/giác adm và t/giác ame, có
am chung
góc amd=góc ame (cmt)
dm=me ( gt)
=> t/giác ADM = t/giác AME
=> AD=AE ( 2 cạnh tương ứng )
a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)
Vậy \(AM\perp BC\)
b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
Xét ΔBAD và ΔCAE có
AB=AC
\(\widehat{B}=\widehat{C}\)
BD=CE
Do đó: ΔBAD=ΔCAE
Suy ra: \(\widehat{BAD}=\widehat{CAE}\)
Bài 1:
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB>AC
nên BD>CD
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
a) Ta có: tam giác ABC cân tại A (gt)
=> Góc B = góc C1, AB = AC (định lí)
Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
BD = CE (gt)
Góc B = góc C1 (chứng minh trên)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> Góc BAD = góc CAE (2 góc tương ứng) (đpcm)
b) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AB = AC (2 cạnh tương ứng)
Xét tam giác ADE và tam giác CEK có:
DE = CE (gt)
Góc AED = góc CEK (2 góc đối đỉnh)
AE = EK (gt)
=> Tam giác ADE = tam giác CKE (c.g.c)
=> AD = CK (2 cạnh tương ứng)
Kẻ đường cao AH
Ta có: DH < AH
=> AD < AB mà AB = AC (chứng minh trên)
=> AC > AD (đpcm)
c) Ta có: AD < AC
Mà AD = CK (2 cạnh tương ứng)
=> CK < AC
Xét tam giác ACK có AC > CK
=> Góc CAK < góc K (định lí)
Lại có: góc BAD = góc CAE (chứng minh trên)
=> Góc BAD < góc K
Mà góc K = DAE (vì tam giác ADE = tam giác KCE)
=> Góc BAD < góc DAE
hay góc BAD = góc CAE < góc DAE (đpcm)
a) Ta có: (hai góc kề bù)
(hai góc kề bù)
mà (hai góc ở đáy của ΔABC cân tại A)
nên
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
hay (đpcm)
Xét ΔADB và ΔAEC có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE và góc BAD=góc CAE
góc AEB>góc C
=>góc AEB>góc ABE
=>AB>AE
Lấy M sao cho D là trung điểm của AM
Xét tứ giác ABME có
D là trung điểm chung của AM và BE
=>ABME là hbh
=>AB=ME>AE và góc BAD=góc AME
=>góc DAE>góc DME
=>góc DAE>góc BAD
cho mình hỏi sao bạn bt lấy điểm M v