K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔADB và ΔAEC có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔADB=ΔAEC

=>AD=AE và góc BAD=góc CAE

góc AEB>góc C

=>góc AEB>góc ABE

=>AB>AE

Lấy M sao cho D là trung điểm của AM

Xét tứ giác ABME có

D là trung điểm chung của AM và BE

=>ABME là hbh

=>AB=ME>AE và góc BAD=góc AME

=>góc DAE>góc DME

=>góc DAE>góc BAD

19 tháng 6 2023

cho mình hỏi sao bạn bt lấy điểm M v

 

Xét ΔADB và ΔAEC có

AB=AC

góc B=góc C

BD=CE

=>ΔADB=ΔAEC

=>góc BAD=góc CAE

26 tháng 2 2018

a) xét 2 tam giác vuông ABM VÀ ACM, có: 

AB=AC         ( ABC CÂN)

góc b = góc c  (___nt____)

BM=CM ( BD=EC; DM=ME)

=> TAM GIÁC ABM = T/GIÁC ACM

=>góc amb = góc amc (2 góc tuog ứng)

mà amb và amc là 2 góc kề bù 

=> amb = amc = 90 độ hay am vuông góc với bc

b) ta có ab = ac vì t/giác abc cân tại a

xét t/giác adm và t/giác ame, có

am chung

góc amd=góc ame (cmt)

dm=me ( gt)

=> t/giác ADM = t/giác AME

=> AD=AE ( 2 cạnh tương ứng )

18 tháng 8 2019

A B D M E C

a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)

Vậy \(AM\perp BC\)

b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC

21 tháng 8 2021

Ta có: \(AB=AC.BD=CE\)  ⇒  \(AD=AE\)

⇒   △ ADE cân tại A  

⇒   \(\widehat{ADE}=\dfrac{180-A}{2}\)  \(\left(1\right)\)

Ta có:  △ ABC cân tại A 

⇒   \(\widehat{B}=\dfrac{180-A}{2}\)  \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:   \(\widehat{B}=\widehat{D}\)

Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC

 

Xét ΔABC có 

\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)

nên DE//BC

=>góc DAE là góc lớn nhất

Xét ΔBAD và ΔCAE có 

AB=AC

\(\widehat{B}=\widehat{C}\)

BD=CE

Do đó: ΔBAD=ΔCAE
Suy ra: \(\widehat{BAD}=\widehat{CAE}\)

Bài 1:

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB>AC

nên BD>CD

Tam giác ABC cân tại A => AB = AC

=> Góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

AB = AC ( cmt )

Góc ABD = góc ACE ( cmt )

BD = CE ( gt )

=> Tam giác ABD = tam giác ACE ( c.g.c )

=> Góc BAD = góc CAE ( 2 góc tương ứng )

=> AD = AC ( 2 cạnh tương ứng )

Xét tam giác ADE và tam giác ACE

AD = AC ( cmt )

DE = EC( gt )

AE chung

=> tam giác ADE= tam giác ACE ( c.c.c )

=> góc DAE = góc EAC ( 2 góc tương ứng )

Ta có: góc BAD = góc EAC ( cmt )

Góc DAE = góc EAC ( cmt )

=> góc BAD = góc DAE = góc EAC

13 tháng 2 2021

A B C D E K H 1

a) Ta có: tam giác ABC cân tại A (gt)

=> Góc B = góc C1, AB = AC (định lí)

Xét tam giác ABD và tam giác ACE có:

AB = AC (chứng minh trên)

BD = CE (gt)

Góc B = góc C1 (chứng minh trên)

=> Tam giác ABD = tam giác ACE (c.g.c)

=> Góc BAD = góc CAE (2 góc tương ứng)   (đpcm)

b) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)

=> AB = AC (2 cạnh tương ứng)

Xét tam giác ADE và tam giác CEK có:

DE = CE (gt)

Góc AED = góc CEK (2 góc đối đỉnh)

AE = EK (gt)

=> Tam giác ADE = tam giác CKE (c.g.c)

=> AD = CK (2 cạnh tương ứng)

Kẻ đường cao AH 

Ta có: DH < AH

=> AD < AB mà AB = AC (chứng minh trên)

=> AC > AD   (đpcm)

c) Ta có: AD < AC

Mà AD = CK (2 cạnh tương ứng)

=> CK < AC

Xét tam giác ACK có AC > CK

=> Góc CAK < góc K (định lí)

Lại có: góc BAD = góc CAE (chứng minh trên)

=> Góc BAD < góc K

Mà góc K = DAE (vì tam giác ADE = tam giác KCE)

=> Góc BAD < góc DAE

hay góc BAD = góc CAE < góc DAE   (đpcm)

18 tháng 4 2021

a) Ta có: ABD^+ABC^=1800(hai góc kề bù)

ACE^+ACB^=1800(hai góc kề bù)

mà ABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

nên ABD^=ACE^

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

ABD^=ACE^(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

⇔AM⊥DE

hay AM⊥BC(đpcm)