cho pt:x2-(m+5)x-m+6=0
a.giải pt với m=1
b.tìm các giá trị của m để pt có nghiệm x=-2
c.tìm các giá trị của m để pt có nghiệm x1,x2 thỏa mãn x12x2+x1x22=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Thế m = 2 vào phương trình được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\)
nhẩm nghiệm có a + b + c = 0 (1 - 4 + 3 = 0) nên: \(x_1=1,x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\)
b) \(\Delta'=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow3-m\ge0\Rightarrow m\le3\)
Theo vi ét có \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4^2-2\left(m+1\right)-5.4=0\)
\(\Leftrightarrow16-20-2m-2=0\)
\(\Leftrightarrow-6-2m=0\Rightarrow m=-\dfrac{6}{2}=-3\) (thỏa mãn)
Vậy m = -3 là giá trị cần tìm.
a: Khi m=2 thì pt sẽ là x^2-4x+3=0
=>x=1; x=3
b: =>(x1+x2)^2-2x1x2-5(x1+x2)=0
=>4^2-2(m+1)-5*4=0
=>-4-2(m+1)=0
=>m+1=-2
=>m=-3
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
a=1,b=-4,c=m-1
Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8
Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6
Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0
Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2
Vậy Với m=6 thì pt 1 có nghiệm kép x=1
b) Theo hệ thức Vi-et
Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2
x1\(^2\)+x2\(^2\)=9
<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9
<=>16-2m+4=9
<=>2m=1
<=> m=\(\dfrac{1}{2}\)
Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
Δ=(2m-2)^2-4(-2m+5)
=4m^2-8m+4+8m-20=4m^2-16
Để PT có hai nghiệm phân biệt thì 4m^2-16>0
=>m>2 hoặc m<-2
x1-x2=-2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(2m-2)^2-4(-2m+5)=4
=>4m^2-8m+4+8m-20=4
=>4m^2=20
=>m^2=5
=>m=căn 5 hoặc m=-căn 5
a. Phương trình có nghiệm \(x=-1\) nên:
\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+2m-2+m-5=0\)
\(\Leftrightarrow m=2\)
Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)
b.
\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4\left(m-1\right)^2-2\left(m-5\right)\)
\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)
a: Khi m=1 thì pt sẽ là x^2-6x+5=0
=>x=1; x=5
b: Khi x=-2 thì pt sẽ là;
(-2)^2+2(m+5)-m+6=0
=>2m+10-m+6+4=0
=>m=-20
c: =>x1x2(x1+x2)=24
=>(-m+6)(m+5)=24
=>-m^2-5m+6m+30-24=0
=>-m^2+m+6=0
=>m^2-m-6=0
=>m=3; m=-2
a)
Thế m = 1 vào phương trình được: \(x^2-\left(1+5\right)x-1+6=x^2-6x+5=0\)
nhẩm nghiệm a + b + c = 0 ( 1 - 6 + 5 = 0) nên \(x_1=1,x_2=\dfrac{c}{a}=5\)
Vậy hệ phương trình có tập nghiệm \(S=\left\{1;5\right\}\)
b)
Phương trình có nghiệm x = -2
=> \(\left(-2\right)^2-\left(m+5\right).\left(-2\right)-m+6=0\)
<=> \(4+2m+10-m+6=0\)
<=> \(m+20=0\Rightarrow m=-20\)
c) Tìm các giá trị của m để phương trình có 2 nghiệm hay 2 nghiệm phân biệt ... ?